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Abstract
Finite automata serve as compute kernels for various ap-
plications that require high throughput. However, despite 
the increasing compute power of GPUs, their potential in 
processing automata remains underutilized. In this work, 
we identify three major challenges that limit GPU through-
put. 1) The available parallelism is insufficient, resulting in 
underutilized GPU threads. 2) Automata workloads involve 
significant redundant computations since a portion of states 
matches with repeated symbols. 3) The mapping between 
threads and states is switched dynamically, leading to poor 
data locality. Our key insight is that processing automata 
“one-symbol-at-a-time” serializes the execution, and thus 
needs to be revamped. To address these challenges, we pro-
pose Non-blocking Automata Processing, which allows par-
allel processing of different symbols in the input stream and 
also enables further optimizations: 1) We prefetch a portion 
of computations to increase the chances of processing multi-
ple symbols simultaneously, thereby utilizing GPU threads 
better. 2) To reduce redundant computations, we store re-
peated computations in a memoization table, enabling us to 
substitute them with table lookups. 3) We privatize some 
computations to preserve the mapping between threads and 
states, thus improving data locality. Experimental results 
demonstrate that our approach outperforms the state-of-the-
art GPU automata processing engine by an average of 7.9× 
and up to 901× across 20 applications.

CCS Concepts: • Computing methodologies → Mas-
sively parallel algorithms; • Computer systems organi-
zation → Single instruction, multiple data; • Theory of 
computation → Formal languages and automata the-
ory.
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1 Introduction
Finite automata are workhorses for many applications across
various domains such as data analytics [10, 31, 49, 54, 76], ma-
chine learning [62], network intrusion detection [42, 46, 73],
graph processing [48], and bioinformatics [18, 47]. Widely
used regular expression engines also use finite automata as
the compute kernels to match patterns [2, 7, 68]. However,
processing automata on compute-centric architectures is
extremely challenging due to irregular accesses and data de-
pendency. The former causes poor cache performance, while
the latter serializes the execution, known as “embarrass-
ingly sequential” [75]. Worse, in recent years, applications
with automata as compute kernels have become increasingly
larger [41]. For example, Snort [46] is a network intrusion
detection and prevention system that matches a series of
rules to identify malicious network activity from many pack-
ets (input streams), where each rule can be represented as an
automaton. From 2014 to 2021, the number of rules has in-
creased by 71% in a ruleset (ET Pro) [6] while the third-party
users continue contributing new rulesets.

To provide high throughput for such large-scale automata
processing applications, many domain-specific accelerators
are proposed. Many of them address the irregular data move-
ment with processing-in-memory architectures [22, 29, 50–
53, 59, 60, 64]. While they could achieve orders of magnitude
higher performance than von Neumann architectures [39],
they lack programmability [13, 21, 23] and are not easily ac-
cessible to all users [40]. Integrating many domain-specific
accelerators into a computer system for diverse workloads
also leads to higher heterogeneity and complexity [63].

Due to their massive data parallelism, GPUs have become
the most widely accepted general-purpose accelerator [37],
and continue to scale faster than CPUs [61]. Processing large-
scale automata applications on GPUs is therefore an attrac-
tive option if high throughput can be achieved.Most previous
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Figure 1.Comparison of processing automata using the prior
“blocking” approach (a) vs. the “non-blocking” approach (b)
proposed in this work: (a) The states matched with two
adjacent symbols are denoted by ○ and ☆. A barrier is
required between them; (b) Our proposal allows matching
states with different symbols in parallel, making the process
“non-blocking”.

works have used two representations of automata: Determin-
istic Finite Automata (DFAs) and Non-deterministic Finite
Automata (NFAs). Since NFAs allow multiple active states
and are compact in size, they can better utilize the paral-
lelism of GPUs [34]. While DFAs are inherently NFAs by
definition [55], they only permit one state to be active at
any time, thereby losing a potential source of parallelism.
Although processing automata on GPUs has been studied for
many years, early works that use small automata up to a few
thousand states [20, 63, 77] perform suboptimally on large-
scale automata applications. In contrast, recent work [34]
has improved the throughput for large-scale automata pro-
cessing on GPUs. However, our detailed characterization
reveals that three challenges have not been systematically
addressed:

● Challenge #1: GPU Threads Underutilization. Prior
works program GPU to process one single symbol from
the input stream at a time. Consequently, numerous
threads that do not have matched states finish earlier and
wait on the cross-symbol barrier until all GPU threads
finish processing the current symbol (Figure 1 (a)). Im-
proving GPU thread utilization is challenging when the
GPU is only allowed to process one symbol at a time due
to the insufficient parallelism offered by that symbol.
● Challenge #2: Redundant Computations. Due to the
nature of the NFA workloads, the always-active states
need to be processed for every symbol from the input
stream. This leads to repeated computations for matching
symbols with the next states, resulting in the inefficient
utilization of GPU cycles.
● Challenge #3: Poor Data Locality. In each iteration,
GPU threads access items from a shared worklist and

push the newly generated computations back. However,
the dynamically changing mapping between threads and
data impairs data locality.

To this end, we propose Non-blocking Automata Pro-
cessing (ngAP in short) on GPUs. In contrast to the prior
works that process one symbol at a time, ngAP allows states
matched with different symbols to be processed in parallel
and hence improves thread utilization (Figure 1 (b)). More
importantly, ngAP provides support for more optimizations
to address these challenges systematically: To address Chal-
lenge #1, we prefetch the matches between symbols and
always-active states to the worklist, enabling concurrent
processing of more symbols. This results in improved thread
utilization due to the availability of more parallelism. Sec-
ond, we address Challenge #2 by designing a memoization
mechanism for a portion of the states in which a sequence of
matching operations can be converted by a table look-up. We
extend the memoization table to support prefixes of patterns,
further reducing redundant computations. Third, to address
Challenge #3, a thread can selectively privatize the newly
generated computations by preserving the data in registers
instead of writing it back to the shared worklist, thus improv-
ing data locality. Overall, a detailed evaluation demonstrates
the impact of each optimization and shows that combined
optimizations significantly improve the throughput of au-
tomata processing on GPUs.

To the best of our knowledge, this is the first work that
reduces the scope of barrier synchronization, allowing many
symbols to be processed in parallel. The non-blocking pro-
cessing enables new opportunities for unexplored optimiza-
tions to address challenges in automata processing on GPUs.
Our contributions can be summarized as follows:

● We characterize and identify three major challenges –
thread underutilization, redundant computations, and
poor data locality – that limit the throughput of au-
tomata processing on GPUs, but remain unsolved in
prior works.
● We propose a new approach, ngAP, that allows matches
between different states and symbols to be processed in
parallel, enabling us to propose three new optimizations
that address the identified challenges synergistically.
● Our detailed evaluation demonstrates that the proposed
approach and optimizations achieve a 7.9× geometric
mean speedup across a wide range of 20 applications
compared to the state-of-the-art GPU automata pro-
cessing engine. Moreover, our approach outperforms
HyperScan, the advanced CPU automata processing
engine, by 11.9×.
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(b) The matching process of the NFA against the
input stream banana.

Figure 2. An NFA example of pattern ⇑𝑛∗ .+(na⋃︀an)?𝑛⇑. “𝑛∗”
represents zero or more repetitions of “𝑛”; “.+” matches any
character one or more times; “(na⋃︀an)?” matches “na”, “an”
or nothing; “𝑛” matches a character “𝑛”.

2 Background
2.1 Non-deterministic Finite Automata
A Non-deterministic Finite Automaton (NFA) is defined as
a quintuple (𝑄, Σ, 𝑞0, 𝛿, 𝐹), where 𝑄 is a finite set of states,
Σ is the alphabet defined by the NFA, 𝑞0 is a set of starting
states, and 𝐹 is a set of reporting states. Transition function
𝛿(𝑆, 𝛼) defines the set of states to be activated when a set
of state 𝑆 matches with input symbol 𝛼 , where 𝑆 ⊆ 𝑄 and
𝛼 ∈ Σ. As used in ANML [1] or MNRL [12] format, this
work focuses on homogeneous NFAs where each state has
valid incoming transitions for only one input symbol, which
could be converted from classical NFA representations by
Glushkov construction [25]. An NFA processing application
consists of multiple homogeneous NFAs, where each NFA
represents a pattern that the application searches for in the
input streams.

Starting States. The matching process begins by acti-
vating the starting states. An NFA processing application
can have two types of starting states: “all-input” states and
“start-of-data” states, defined in ANML or MNRL format. The
“all-input” starting states are used in applications that search
for a pattern throughout the input stream regardless of the
starting location of the pattern. For example, the pattern
“/apple/” searches for all occurrences of the word “apple”
in the input stream. The “all-input” starting states are always
active, so we refer to them as always-active states in this
work. In contrast, if the application is only interested in the
pattern that appears at the beginning of the input stream
(e.g., “/ˆapple/”), the “start-of-data” starting states are only
active at the beginning of the input stream.

NFA Example. Figure 2 (a) illustrates an NFA that accepts
regular expression ⇑𝑛 ∗ .+(na⋃︀an)?𝑛⇑, in which each node is
a state and each edge is a state transition. Each state has a
matchset

1of symbols in the alphabet that the state accepts.
The states in hexagon (𝑆0, 𝑆1) denote always-active starting
1The symbol “∗” in NFA’s matchset means the state can accept any symbol.
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Figure 3. Illustrating the blocking automata processing
(BAP) on GPUs corresponding to iteration 3 of Figure 2.

states while the state (𝑆6) in double-circle denotes a reporting
state. Initially, only the starting states are active. In each
iteration, a symbol of the input stream matches with the
active states. When the matchset of an active state contains
the incoming symbol, the state becomes matched and then
activates its neighbors. Figure 2 (b) illustrates the matching
process of this NFA under the input stream “banana”. For
example, when the incoming symbol is “b”, 𝑆0 and 𝑆1 are
active in iteration 0. Since 𝑆1 accepts “b”, 𝑆1 becomesmatched,
and then activates its neighbors 𝑆2, 𝑆3 and 𝑆6 in the next
iteration. As the starting states (𝑆0, 𝑆1) are always active,
they are also active in iteration 1. We will use this NFA as
examples for illustration purposes in the following sections.

2.2 Processing Automata on GPUs
An NFA application has multiple levels of parallelism [34].
For instance, many input streams (e.g., network packets) and
NFAs (e.g., network intrusion signatures) can be processed
concurrently. Further, multiple states could be active at the
same time. Plenty of parallelism makes NFAs a good fit for
GPUs.

Prior works that process NFAs on GPUs can be categorized
into topology-driven and data-driven approaches. Topology-
driven approaches [20, 71, 72] statically map GPU threads to
NFA states or transitions. However, these approaches tend
to underutilize GPU threads when states or transitions are
idle, leading to lower throughput compared to data-driven
approaches. In contrast, to alleviate the underutilization of
GPUs, state-of-the-art approaches often adopt variants of
data-driven approaches [34, 35, 77], which maintain double-
buffered worklists only for the active or matched states. Next,
we will introduce the basic idea of data-driven approaches.

Illustrative Example. Figure 3 depicts the matching
process in the data-driven approach, where two worklists
containing matched states – the current worklist and the next
worklist – are double-buffered. During each iteration, each
thread is assigned to one or more states in the worklist ( 1 ).
These matched states in the current worklist (𝑆0, 𝑆1, 𝑆3, 𝑆4, 𝑆6)
activate their neighbors (𝑆1, 𝑆2, 𝑆3, 𝑆6, 𝑆5, 𝑆6). Then, the acti-
vated neighbors match with the incoming symbol (“a”). Only
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Figure 4. Thread utilization across the evaluated applica-
tions. Evaluation methodology is shown in § 5. “BAP” stands
for “blocking automata processing”, the double-buffered
worklist approach. The other two bars show proposed
schemes discussed in § 4.1 and § 4.2.

the matched states (𝑆1, 𝑆2, 𝑆5) are pushed into the next work-
list ( 2 ). A report is generated if a reporting state is matched
(none in this case). Since 𝑆0 and 𝑆1 are always-active states,
we match them with the incoming symbol and only push the
matched states (𝑆1) into the next worklist ( 3 ). At the end of
the step, the next worklist is assigned to the current worklist
while the current worklist is emptied ( 4 ). In other words, ev-
ery state that shares the same worklist must wait on a barrier
until all the states in the current worklist are processed, mak-
ing the process “blocking”. This matching process consumes
a symbol at each iteration (i.e. “one-symbol-at-a-time”) until
all symbols in the input stream are processed. We refer to
this approach as “BAP” (blocking automata processing).

3 Motivation
3.1 Challenge #1: GPU Threads Underutilization
This section shows factors that can affect GPU thread uti-
lization. We first discuss the definition of thread utilization,
followed by an example showing why input can affect it.

Thread Utilization. We define thread utilization as the
ratio of busy threads count to the total number of threads. If
there is no work available to be picked up by GPU threads,
they are considered idle. To illustrate this concept, we use an
example of matching the input stream banana with the NFA
in Figure 2. Figure 8 compares the thread utilization between
BAP and our optimizations, which will be discussed later. To
process the fourth symbol “a”, Figure 8 (a) indicates that four
threads are mapped to the first four states in the worklist (𝑡1),
while the first thread works on the fifth state in the second
round (𝑡2). Consequently, in the second round, all threads
except the first thread remain idle, resulting in poor thread
utilization (i.e. thread utilization = 5⇑8). When processing the
next symbol “n”, at time 𝑡3, three states in the worklist are
assigned to four threads, leaving one thread idle, thus the
thread utilization is 3⇑4. Figure 4 depicts the measured thread
utilization across the evaluated applications. We observed an
average thread utilization of only 32.6% in blocking automata

processing (shown in the “BAP” bar). Furthermore, a few
applications have a thread utilization of less than 3%.

Insufficient Parallelism. The states in the worklist run
in parallel. However, the length of the worklist at any given
iteration depends on the number of matched states, which
may not be enough to utilize all the threads. This issue is
also highlighted by previous research showing only a small
fraction of states are active for most of the time [33, 34, 58].
Although decreasing the number of threads allocated to the
worklist to improve utilization is possible, it would result
in serialized execution and poor performance. Thus, only
leveraging the parallelism provided by one symbol is often
insufficient, leading to thread underutilization.

Summary. We conclude that when the worklist does
not have enough states, the GPU threads are underutilized.
One key reason is that the threads can only work on states
matched at the same iteration of the input stream as a barrier
must be performed by the end of each iteration. Otherwise,
if threads could proceed without per-symbol barriers, as Fig-
ure 1 (b), thread utilization could be improved significantly.

3.2 Challenge #2: Redundant Computations
This section first analyzes the redundant matches associated
with always-active states, and then investigates the potential
to reduce the work by not computing these matches.
Due to the nature of the matching process of automata,

when matching a given string, a constant set of active states
will transition to another predetermined set of active states.
For example, a set of active states {S2, S3} in the NFA of Fig-
ure 2 (a) will transition to {S6} when the input string is “an”.
When the combination of active states and string recurs dur-
ing the matching process, computations become redundant.
In practice, this happens often: Consider the matching pro-
cess depicted in Figure 3 ( 3 ), where the always-active states
match against the incoming symbols, and the matched ele-
ments are pushed into the subsequent worklist. During each
iteration, the identical set of always-active states matches
against the incoming symbol. Since each application has an
alphabet Σ, there are only ⋃︀Σ⋃︀ combinations of input sym-
bols and the always-active states. As a result, it becomes
unnecessary to repeatedly match the always-active states
and the incoming symbol in order to obtain the matching
results. Instead, these matching results can be stored for fu-
ture reference. It is important to note that only 2 out of 20
evaluated applications (APR and SM; see Table 2) do not have
always-active states. Consequently, most applications face
the challenge of redundant computations.

Potential to Convert the Matches to Table Lookups.
We investigate howmuchwork can be eliminated by convert-
ing redundant matches to table lookups. Given that always-
active states match with every symbol in the input stream,
we associate these matches to individual symbols. To achieve
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this, we define a pattern to be a sequence of symbols begin-
ning with amatch against always-active states and extending
until no state stays active. Hence, in Figure 5 (a), we demon-
strate the patterns vertically and place them along with the
symbol at which they start. For example, searching for the
NFA depicted in Figure 2 (a) from the first symbol in the
input stream banana results in the matching process demon-
strated in Figure 5 (b), where bana was identified. When the
matching results of a pattern prefix and the always-active
states are stored, we can convert thematches to table lookups.
Figure 5 (a) depicts the pattern prefixes of length 𝑝 = 3 in
shaded boxes. By using the total number of matched symbols

as an indicator to measure the total amount of work, storing
matching outcomes for all prefixes of length 3 removes a
considerable portion of computations (79%), as evidenced by
this illustration.

Results. We further measure the percentage of work
that could be eliminated by storing the matching results
of pattern prefixes and always-active states when varying
the prefix length 𝑝 from 1 to 5. Figure 6 displays that elimi-
nating matches associated with all prefixes of length 1 to 5
reduces the total work by 59.7% to 88.6%, on average across

the evaluated applications. Notably, this reduction is more
pronounced for 𝑝 values ranging from 1 to 3 (from 59.7% to
81.9%) than for those from 3 to 5 (81.9% to 88.6%).

Summary. Our analysis highlights that transforming
pattern prefixes and always-active states matches into table
lookups can substantially diminish the workload.

3.3 Challenge #3: Poor Data Locality
In this section, we show why prior data-driven designs lead
to poor data locality.

Threads and States Mapping Switches Frequently. As
discussed in Section 2.2, in the blocking automata process-
ing (BAP), threads store the matched neighbors of states in
the current worklist to the next worklist. Then, the states in
the next worklist are evenly assigned to the threads. This
approach redistributes the newly generated work for each
iteration and hence ensures load balance.

Analysis of Poor Locality. However, the remapping be-
tween threads and states happens frequently, leading to poor
locality. In each iteration, a thread loads a different state
and then fetches its neighbors. For example, in an iteration,
thread 𝑡𝑖 is mapped to 𝑆𝑖 . To match a symbol, thread 𝑡𝑖 loads
the data structures of 𝑆𝑖 and 𝑆𝑖 ’s neighbors from memory.
Suppose 𝑆 𝑗 is a state of 𝑆𝑖 ’s neighbors. At this time, 𝑆 𝑗 must
be in the registers of thread 𝑡𝑖 ’s context and cache. However,
thread 𝑡𝑖 pushes 𝑆 𝑗 into the next worklist, and then mapped
to another state in the next iteration, resulting in a loss of
data locality. Similarly, as 𝑆 𝑗 may be also mapped to a thread
other than 𝑡𝑖 in the next iteration, we are unsure whether 𝑆 𝑗
is still in the cache or has been evicted due to limited cache
size (especially, L1 cache is small in GPUs).

Summary. Overall, prior approaches do not exploit the
temporal locality in the matching process, potentially re-
sulting in suboptimal performance. Therefore, if we could
preserve the mapping between threads and data for a longer
duration, the data locality would be improved.

4 ngAP: Non-blocking Automata
Processing

We propose ngAP, Non-blocking Automata Processing, that
allows threads to work on different symbols in parallel. Our
key insight is that the scope of synchronization can be re-
duced to a single state, eliminating the need to process the in-
put stream one symbol at a time. This non-blocking approach
leverages parallelism across different symbols of the input
stream, making the matching process more efficient. This
section first discusses the design of ngAP (§ 4.1), followed
by new optimizations enabled by ngAP to systematically
address the three challenges in § 4.2, § 4.3, and § 4.4.
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4.1 Design of Non-blocking Automata Processing
Worklist of State-Index Pairs. The basic execution flow

of ngAP is presented in Figure 7. In contrast to prior works,
we use a single worklist instance for all iterations instead of
double-buffered worklists. In BAP, all states in the worklist
process the same symbol index, thus synchronization across
all states for the next iteration is needed. However, if each
state in the worklist is aware of the index of the input symbol
it needs to match with, the matching process can continue
by matching the state’s neighbors and the symbol at the cor-
responding index. Therefore, we represent each element of
the worklist as a pair that contains the symbol index and the
matched state (i.e., state-index pair). Figure 7 ( 1 ) illustrates
the worklist of state-index pairs. As a result, this worklist
allows any indices of the input stream to be included, and
thus can be processed in parallel.

State Transition. A slidingwindow (dashed rectangle) of
the pairs is mapped to the threads in each iteration ( 2 ), man-
aged by two pointers head and tail that point to the range
of elements in the worklist. In each iteration, the threads
fetch a sliding window of state-index pairs from the worklist,
which is done by updating the two pointers atomically. In
Figure 7, the second thread is mapped to a pair (𝑆1, 3). It loads
the index 3 from the input stream (“a”) and then matches “a”
with 𝑆1’s neighbors ( 3 ). As 𝑆2 accepts “a”, the pair (𝑆2, 4),
where 4 is the next symbol index, will be pushed into the
worklist ( 5 ).

Handling Always-Active States. Besides the states in
the sliding window, the threads must process the always-
active states. When the threads start to process a new index
in the input stream that was not processed (in this example,
index 3), theymatch the always-active states with the symbol
at the new index. The matched always-active states and the
next index are paired (𝑆1, 4) ( 4 ), and will be pushed into
the worklist ( 5 ). Finally, in the next iteration, the threads
are mapped to new state-index pairs by updating the sliding
window ( 6 ).

Summary. ngAP releases the restriction on the synchro-
nization scope from all states in the application to the states
within a sliding window. Further, we discuss how ngAP pro-
vides support for further solutions to the three challenges.

4.2 Optimization #1: Enhancing Thread Utilization
via Prefetching Always-Active States

In this section, we first characterize how ngAP improves
thread utilization, then propose a new optimization that
works with ngAP to address Challenge #1.

Thread Utilization Revisited. In comparison to Fig-
ure 8 (a) where the thread utilization is only 8⇑12, ngAP
exhibits an improved thread utilization, as depicted in Fig-
ure 8 (b), with a shift from 8⇑12 to 1. Although ngAP enables
processing of different symbols simultaneously, we have
noticed that execution is serial at the state level, and the
worklist is scheduled in a first-come-first-serve order, lead-
ing to limited parallelism improvement since the indices
co-existing are not many in the worklist. Figure 4 shows that
ngAP only slightly improves thread utilization, increasing it
from 32.6% to 33.2%.

Prefetching Always-Active States. To further address
Challenge #1, we leverage the parallelism that arises from
processing different symbols, and maximize the opportu-
nity to process different symbols. As discussed in Section 2,
always-active states must match with every symbol in the
input stream. Therefore, we propose to prefetch matches be-
tween each symbol and always-active states to the worklist
in batches. At the start of execution, the threads load a batch
of symbols and match them with always-active states. For
instance, with a batch size of 3 (𝑏 = 3), symbols with indices
0 to 2 match with the always-active states, and the resulting
state-index pairs are added to the worklist. The iteration 𝑡1
of Figure 8 (c) depicts the content of the worklist after load-
ing the first batch. As a result, symbols at indices 1,2,3,3 are
matched with the neighbors of 𝑆1, 𝑆1, 𝑆0, 𝑆1, respectively. In
the following iteration 𝑡2, since index 3 hasn’t matched with
always-active states, a batch of matching results between
symbols (indices 3 to 5) and always-active states are loaded
to the worklist (omitted from this figure).

Thread Utilization Improvement. Compared with Fig-
ure 8 (b), more symbols are processed in each iteration with
Prefetching Always-Active States, thereby improving thread
utilization considerably. According to Figure 4, the addition
of Prefetching Always-Active States (batch size 𝑏 = 256) to
ngAP results in a substantial improvement in thread utiliza-
tion across the evaluated applications, increasing it from an
average of 33.2% to 83.6%. We will discuss how we determine
the batch size in Section 5.

Summary. We propose ngAP to solve Challenge #1,
enabling parallel processing of symbols. By prefetching the
matches between always-active states and symbols to the
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worklist, we increase the number of indices coexisting in the
worklist. As a result, our approach improves thread utiliza-
tion significantly.

4.3 Optimization #2: Reducing Redundant Work via
Prefix Memoization

To address Challenge #2, we introduce Prefix Memoization
in this section. Prefix Memoization substitutes matches be-
tween always-active states and pattern prefixes with table
look-ups, thereby reducing redundant computations.

Memoization Table. The memoization table is computed
offline since the number of possible combinations between
always-active states and short prefixes with a length of 𝑝 is
finite. To construct thememoization table, we first enumerate
all prefixes of length 𝑝 according to the alphabet. Thus, if the
alphabet size is ⋃︀Σ⋃︀, the table needs ⋃︀Σ⋃︀𝑝 entries to store all 𝑝-
length prefixes. We match each prefix with the always-active
states and their subsequent states, and store what states are
matched when the prefix ends to each entry of the table.
Since reports could be generated within 𝑝-length patterns,
we also store the generated reports in table entries.

Illustrative Example. In Figure 9, an example of using
a memoization table for pattern prefixes is illustrated. In the

Matched States Reporting States

n

n

n

Stage 1 Stage 2 Stage 3

Figure 10. Balancing workload when loading results for
multiple prefixes from the memoization table.

current iteration, we need to match index 3 with always-
active states, and the memoization table records prefixes of
length 2. Thus, we look up the table for the prefix composed
by symbols at indices 3 and 4 (“an”, shaded in the figure),
and then add the entry to the worklist, along with other
matched states at the end of this iteration. If the entry in-
cludes reporting states, reports are generated at the symbol
indices accordingly. By substituting computations with table
lookups, we can eliminate a significant amount of redundant
computations since the same prefix can occur many times
during execution.

Integrating with Prefetching Always-Active States.
We can build Prefix Memoization on top of Prefetching
Always-Active States (Section 4.2): We prefetch the match-
ing results from the memoization table in batches. Threads
load every 𝑝 adjacent symbols from the input stream and
look up the corresponding entries in the table. However,
it’s worth noting that the sizes of the matching results for
prefixes and always-active states can vary significantly. As
shown in Figure 10, the entries differ in size. Loading an en-
try using each thread results in a significant load imbalance,
which impinges on thread utilization. To tackle this issue,
we distribute the entries evenly across threads by loading



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Tianao Ge, Tong Zhang, and Hongyuan Liu

Table 1. The memory consumption and construction time of
memoization table with the prefix of length 3 with/without
compression. Applications without always-active states are
excluded.

App. Brill CRP1 CRP2 CAV ER
W/O Comp. 640.8 MB, 2.4 s 158.7 MB, 3.7 s 3.3 GB, 221.5 s 140.5 MB, 1.2 s 154.6 MB, 9.2 s
WComp. 507.2 MB, 2.1 s 24.6 MB, 3.8 s 3.1 GB, 223.1 s 8.4 MB, 0.7 s 20.4 MB, 9.7 s

App. HM LV Pro RF Snort
W/O Comp. 67.2 GB, 150.4 s 1.2 GB, 6.6 s 410.7 MB, 1.7 s 3.6 GB, 20.6 s 354.5 MB, 2.9 s
WComp. 67.2 GB, 171.6 s 1.1 GB, 6.3 s 282.6 MB, 1.5 s 3.4 GB, 19.7 s 286.9 MB, 2.8 s

App. YARA DS PEN Bro EM
W/O Comp. 5.4 GB, 23.7 s 134.3 MB, 0.4 s 134.2 MB, 0.3 s 134.2 MB, 0.3 s 134.2 MB, 0.3 s
WComp. 5.3 GB, 26.6 s 128.3 KB, 0.1 s 29.5 KB, 0.1 s 6.0 KB, 0.1 s 1.9 KB, 0.1 s

App. Ran1 Ran5 TCP
W/O Comp. 134.2 MB, 0.3 s 134.2 MB, 0.3 s 134.8 MB, 0.3 s
WComp. 2.4 KB, 0.1 s 3.8 KB, 0.1 s 1.1 MB, 0.1 s
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Figure 11. The comparison between uncompressed and com-
pressed memoization table formats.

them in three stages. In the first stage, each thread loads
the initial few states in each entry. The dashed line in Fig-
ure 10 represents a threshold, and all entries that exceed
this threshold are fetched in the second stage. We set up the
threshold to the average length of entries as it achieves the
best performance empirically. During the second stage, all
threads in the thread block collectively load the remaining
states in the longer entries, distributing them equally among
them. In the final stage, since reports are infrequent in the
prefixes, each thread loads only the reports from the entry it
needs.

Memory and Time Consumption. Table 1 shows the
memory usage and construction time for amemoization table
containing 3-length prefixes (𝑝 = 3), as indicated in the "W/O
Comp" row. The memory space required for the table ranges
from hundreds MBs to several GBs in various applications.
We observe that most offline computations can finish in
several seconds, however, a few applications (e.g. CRP2 and
HM) require minutes because they have more active states on
average for the prefixes. Nevertheless, since these generated
tables can serve for all input streams, the computation time
could be amortized.

Prefix Length Selection. With 𝑝 values ranging from 1
to 3, we observe increased throughput for all applications.
Therefore, we use 𝑝 = 3 for all applications except YARA and
HM, which uses 𝑝 = 2 due to exceeding the memory capacity
of the GPUs for evaluation. In this work, we limit 𝑝 to 3
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for two reasons: 1) In Section 3.2, we demonstrate that the
benefits of increasing the prefix length to 4 or more are less
significant. 2) Computing a memoization table with 𝑝 ≥ 4
takes at least hours, and storing it is very expensive.

Memoization Table Compression. Since the table has
entries with different sizes, we store it in a format similar to
Compressed Sparse Rows (CSR, as shown in Figure 11 (a)).
However, we found that many rows of the table, such as
the row for ab and ba in this figure, are empty and take up
space in the row pointer array (RPtr) of the CSR format, even
though no values are stored in them. To mitigate this issue,
we compress the memoization table by indexing it with the
prefix values. Figure 11 (b) illustrates our design. The initial
two rows contain the values for non-empty prefixes and their
corresponding starting locations. Retrieving a prefix’s entry
requires a thread to perform a binary search on the first row
(RIdx) and then load the row pointer to access the entry.
Table 1 illustrates the impact of compression on the table. In
general, compression substantially reduces the storage space
required for memoization tables, and takes similar amount
of time in preparing them. For instance, certain applications
(e.g., Bro, Ran5, PEN, CAV) may only need up to a fewMBs,
as opposed to several hundredMBswithout compression.We
observe the throughput is also improved by 5.3% on average
due to reduced memory footprint.

4.4 Optimization #3: Improving Data Locality via
Work Privatization

In this section, we proposeWork Privatization to improve the
data locality. The key reason behind Challenge #3 is that
each thread pushes the state-index pairs produced by it to the
shared worklist. However, the consumer thread of the state-
index pairs is dynamically mapped. This loses data locality
and requires more writes and loads on the GPU memory.

Work Privatization. Figure 12 shows howWork Privati-
zation works. The threads extend to the neighbors of states
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Table 2. Characteristics of evaluated applications. CC stands for “connected component”.

Suite Idx Application Abbr. #states #always-active #start #report #CC max CC size avg CC size

AutomataZoo [67]

1 APPRNG4 APR 20000 0 1000 4000 1000 20 20.0
2 Brill Brill 115549 5946 0 5946 5946 40 19.4
3 CRISPR_CasOFFinder CRP1 74000 4000 0 2000 2000 37 37.0
4 CRISPR_CasOT CRP2 202000 4000 0 2000 2000 101 101.0
5 ClamAV CAV 2374717 33171 0 33667 33171 22075 71.6
6 EntityResolution ER 413352 10000 0 10000 10000 75 41.3
7 Hamming_N1000_l18_d3 HM 108000 2000 0 2000 1000 108 108.0
8 Levenshtein_l19d3 LV 109000 4000 0 4000 1000 109 109.0
9 Protomata Pro 24103 1302 8 1321 1309 123 18.4
10 RandomForest_20_400_200 RF 992000 16000 0 16000 16000 62 62.0
11 SeqMatch_BIBLE_w6_p6 SM 51570 0 10314 1719 1719 30 30.0
12 Snort Snort 202043 2507 644 3246 2486 4509 81.3
13 YARA YARA 1047528 23537 2 23583 23530 1017 44.5

ANMLZoo [65] 14 Dotstar DS 96438 2837 0 2838 2837 95 34.0
15 PowerEN PEN 40513 2857 0 3456 2857 52 14.2

Regex [17]

16 Bro217 Bro 2312 187 0 187 187 84 12.4
17 ExactMatch EM 12439 297 0 297 297 87 41.9
18 Ranges1 Ran1 12464 297 0 297 297 96 42.0
19 Ranges05 Ran5 12621 299 0 299 299 94 42.2
20 TCP TCP 19704 756 0 767 738 391 26.7

that are mapped to them, and then check whether the neigh-
bors match with the symbols in the corresponding indices
(Step 1). With Work Privatization, each thread can decide
whether it privatizes the extended neighbors without writing
them back to the shared worklist. As shown in Step 2, the
thread could further compute ahead without interacting with
the shared worklist. This improves temporal locality at the
expense of parallelism, as the extended states are processed
sequentially.

ControllingWarp Divergence andWork Serialization.
First, A thread must decide whether it privatizes its computa-
tions, or terminates the privatization by pushing the results
back to the worklist. However, on a GPU, threads within
the same warp must run in lockstep [24]. If a few threads
within a warp choose to privatize their computations while
others do not or cannot due to mismatches, warp divergence
impairs thread utilization. To address it, each warp calculates
an active thread ratio for the next step, depending on whether
its threads have more work to do. For example, assuming the
warp size is 4, in step 1 of Figure 12, only 3⇑4 threads have
more computations, thus the active thread ratio is 3⇑4. To
control the warp divergence, we set up a threshold 𝑑 : When
active thread ratio ≤ 𝑑 , the threads terminate privatization
as thread utilization will be low if continues. If 3⇑4 < 𝑑 , all
threads within the same warp terminate privatization; oth-
erwise, the threads could step forward. Essentially, 𝑑 = 100%
indicates we disable Work Privatization while 𝑑 = 0% indi-
cates a thread always privatizes its work. Second, a thread
needs to limit the number of steps to privatize the computa-
tions because privatization for many steps accumulates the
works of a thread, serializing the computations. To control
the serialization, we limit the maximum number of steps (𝐾 ).
We empirically observe that when 𝐾 > 1, the throughput

Table 3. Evaluated schemes. ngAP’s parameters: sliding win-
dow (𝑠), batch size (𝑏), prefix length (𝑝), and divergence
threshold (𝑑).

Scheme Description
HyperScan [68] State-of-the-art automata processing engine on CPUs
NFA-CG [77] Calculating compatible groups and mapping to threads.
AsyncAP [35] Matching patterns asynchronously in the input stream.
GPU-NFA [34] Flexibly scheduling hot and cold states to threads.
ngAP-default Our proposed design with default parameters.

(𝑠 = 25600, 𝑏 = adaptive, 𝑝 = 3, 𝑑 = 0%)
ngAP-best Our proposed design with tuned parameters.

(𝑠 ∈ {256, 5120, 10240, 25600},
𝑏 ∈ {32, 64, 128,256, 512, 1024, 2048, 4096, 1000000, adaptive},
𝑝 = 3, 𝑑 ∈ {0%, 25%, 50%, 100%})

degrades drastically due to work serialization, thus we set
𝐾 = 1 in this scheme while leaving the divergence threshold
𝑑 as a tunable parameter.

Discussion. Although our proposed optimizations tackle
different challenges, they share a common requirement: the
worklist must be able to handle various indices of symbols.
Consequently, these optimizations cannot be applied to prior
work, and they must be built on top of ngAP. We will show
that these optimizations can work synergistically to address
three challenges effectively in § 6.

5 Evaluation Methodology
System Configuration. We perform most experiments

on a computer with an NVIDIA RTX 3090 (Ampere architec-
ture, 24 GBmemory, 6 MB L2 cache, and 82 SMs). The system
runs Linux on a 12-core Intel Xeon 4214R CPU and 128 GB
memory. We use NVIDIA NSight Compute to profile the ker-
nels. All CUDA/C++ programs were compiled with -O3 flag
with GCC 9.5 and CUDA 12.0. We use an NVIDIA Tesla V100
(Volta architecture, 32 GB memory, 6 MB L2 cache, and 80
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Figure 13. Throughput results normalized to GPU-NFA.

SMs) to evaluate the performance sensitivity. The through-
put is defined as the number of input symbols processed per
second. The execution time is averaged across three repeated
runs excluding automata loading and data preparation, as
they can be amortized with long input streams.

Benchmarks. We evaluate a wide range of applications
from AutomataZoo [67], ANMLZoo [65], and Regex [17].
Only two were selected from ANMLZoo as most of its ap-
plications were updated in AutomataZoo. Table 2 shows
the characteristics of the evaluated applications. To sim-
ulate a real-world scenario, we use a 1 MB input stream
equipped with each application in the benchmark suites and
then generate 600 copies as the input. In order to reduce the
duration of experiments, for the applications that cannot
finish within an hour, we use a throughput of 0.16 MB/s
(i.e., 600MB⇑3, 600s) to estimate its upper bound. To validate
our implementations, we use a serial version of automata
processing on the CPU as a reference and verify that the
generated reports, which include the reporting states and
corresponding symbol indices, are identical.

Evaluated Schemes. Table 3 summarizes the evaluated
schemes. For GPU work, we evaluate three prior data-driven
designs: NFA-CG [77], GPU-NFA [34], and AsyncAP [35].
NFA-CG and GPU-NFA are variants of BAP. AsyncAP in-
creases the parallelism by starting matching from different
input locations in the input stream. HyperScan [68] is the
state-of-the-art CPU automata processing engine, combining
many optimizations. We use MNCaRT [11] and VASim [66]
to convert the automata for HyperScan. ngAP-default and
ngAP-best are our schemes with different parameter setups.

Parameter Setup. Table 3 also shows the tunable pa-
rameters: sliding window size 𝑠 (§ 4.1), batch size 𝑏 (§ 4.2),
and divergence threshold 𝑑 (§ 4.4). ngAP-default uses a
set of parameters that work well for all applications, while
ngAP-best tunes the best parameter combination for each
application. We propose an adaptive scheme for batch size 𝑏,
as we observe a larger value of it has better performance but
may overflow the worklist. When Prefix Memoization and
Prefetching Always-Active States are enabled, we estimate the
number of state-index pairs to be included in the worklist as

Table 4. Absolute throughput for evaluated applications
in MB/s. T: Timeout (time limit: 1 hour). U: Unsupported
applications.

App HyperScan NFA-CG AsyncAP GPU-NFA ngAP-default ngAP-best
APR T 8.0 U 3.6 8.4 9.4
Brill 1.2 1.1 4.7 6.8 8.6 9.5
CRP1 0.3 5.1 22.3 4.1 33.1 37.0
CRP2 T 2.5 14.5 1.8 7.3 8.5
CAV 327.0 U 6.6 U 2334.8 5596.9
ER 1.6 0.7 6.8 9.1 64.3 80.9
HM T 4.9 25.1 5.6 7.5 7.9
LV T 1.1 0.7 1.2 0.5 0.9
Pro 1.9 4.8 1.3 30.5 141.7 158.0
RF 0.4 0.3 1.1 4.8 1.8 1.8
SM 2.9 3.1 U 8.0 4.5 4.6
Snort 36.6 U 20.2 U 63.8 114.9
YARA 65.13 0.3 6.9 3.5 50.4 52.8
DS 196.0 7.3 57.3 41.1 1452.6 1612.1
PEN 214.2 9.3 T 33.0 208.9 222.5
Bro 895.8 143.2 732.3 347.7 3897.3 13452.8
EM 3693.0 78.5 440.6 283.2 3690.2 8947.4
Ran1 485.1 79.6 448.1 276.4 3598.9 11461.3
Ran5 641.5 77.6 447.9 278.9 3405.5 11743.4
TCP 148.9 31.3 198.5 179.8 2037.3 3298.0

the entry with a maximum number of states for prefixes to
be loaded (𝑒). Thus, when a batch is loaded, the batch size is
set to the remaining spaces of the worklist divided by 𝑒 .

6 Experimental Results
6.1 Throughput
The normalized throughput of the evaluated applications is
shown in Figure 13. It should be noted that GPU-NFA and
NFA-CG transform NFAs to restrict each node from having
an out-degree fewer than 4. However, a few NFAs cannot be
transformed, we excluded 2 NFAs from CAV and 5 NFAs from
Snort and refer to them as CAV’ and Snort’, respectively.
In contrast, our design utilizes a compressed sparse rows
(CSR) format for NFA topology, eliminating the need for NFA
transformation and avoiding this limitation. The absolute
throughput of full applications is in Table 4.

Overall Improvement. As shown in Figure 13, on aver-
age, ngAP-default and ngAP-best significantly outperform
other designs. Specifically, ngAP-best is 39.5×, 13.2×, and
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Table 5. Breaking down ngAP to evaluate effect of each
optimization.

Solutions

Abbr. Non-blocking
(𝑠 = 25600)

Prefetching
Always-Active States

(𝑏 = 256)

Prefix
Memoization

(𝑝 = 3)

Work
Privatization
(𝑑 = 0% or 50%)

BAP
ngAP ✓

ngAP+O1
✓ ✓

ngAP+O2
✓ ✓ ✓

ngAP+O3
✓ ✓ ✓ ✓

7.9× faster than NFA-CG, AsyncAP, and GPU-NFA, respec-
tively. ngAP-default also improves throughput over prior
schemes by 27.5×, 9.2×, and 5.5× without parameter tuning.

Application Analysis. Compared to GPU-NFA, ngAP-
default and ngAP-best achievemaximal speedups of 486.6×
and 901.9× for CAV’. 8 out of 15 applications experience
more than 10× speedup. Our schemes improve performance
in these applications for two reasons: 1) Some applications
have imbalanced worklists, resulting in low thread utiliza-
tion. Applications with few states, such as DS, BRO, and EM,
lack parallelism to fully utilize threads when processing one
symbol at a time. 2) These applications have short patterns,
allowing the memoization table to eliminate most compu-
tations during prefix lookup. Our schemes synergistically
address thread utilization and redundant work problems,
resulting in significant speedup.
Certain applications do not have speedup due to the ab-

sence of always-active states (SM) or the memoization table
covering only a small percentage of work (LV, RF, HM). Our
schemes are slower than AsyncAP for a few applications
(CRP2 and HM) because when an application’s patterns are
balanced, AsyncAP has less overhead, but it performs poorly
in imbalanced scenarios (e.g., PEN). Overall, our scheme
achieves significant speedup for most evaluated applications.

ComparisonwithHyperScan. Table 4 showsHyperScan
throughput, which is faster than prior GPU work on some
applications. However, overall, ngAP-best outperforms Hy-
perScan, except for YARA. Notably, in intrusion detection
application Snort that HyperScan focused on, ngAP-best
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Figure 15. Average profiling results for evaluated applica-
tions.

achieves a 3.1× speedup. Finally, ngAP-default and ngAP-
best are 7.9× and 11.5× faster than HyperScan, respectively.

6.2 Breakdown Analysis
To understand the impact of proposed optimizations for
ngAP, we evaluate them incrementally on top of a baseline
blocking automata processing on GPUs (“BAP”, discussed
in § 2). Figure 14 shows the throughput normalized to BAP
for each optimization by adding it on top of the former one
(as listed in Table 5). Our observations are as follows: 1) On
average, ngAP slightly decreases throughput by 10% com-
pared to BAP due to increased overhead from maintaining
the worklist of state-index pairs. 2) ngAP+O1 achieves a 1.9×
increase in throughput compared to BAP due to significant
improvement in thread utilization from Prefetching Always-
Active States. 3) Throughput is significantly improved by
7× with ngAP+O2, indicating that Prefix Memoization ef-
fectively eliminates redundant computations. 4) ngAP+O3

improves throughput to 7.7× compared to BAP, demonstrat-
ing the effectiveness of Work Privatization to improve the
data locality.

Profiling Results. We profiled cache and memory statis-
tics to understand the reasons behind the improved through-
put. Figure 15 (a) shows that all optimizations increase the L1
cache hit rate, with ngAP+O1 showing the most significant
improvement due to Prefetching Always-Active States. This
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Figure 16. Performance sensitivity to parameter tuning.

optimization gathers the same states with different symbol
indices, allowing better cache utilization when accessing
the NFA topology. ngAP+O3 further increases the hit rate
by 5% compared to ngAP+O2 by reducing thread switching
and allowing cache reuse. Although ngAP generates more
memory requests due to additional symbol index informa-
tion, other optimizations alleviate this problem. ngAP+O2

significantly reduces store and load requests by removing
redundant computations, as seen in Figure 15 (b).

6.3 Sensitivity Studies
To investigate the impact of each parameter on sensitivity,
we have fixed the parameters as listed in Table 5 and then
varied one parameter at a time. Then, we study whether our
approaches work in other GPU architectures.

Sensitivity to Sliding Window Size. As discussed in
Section 4.1, the sliding window size (𝑠) can affect thread
utilization. Figure 16 (a) demonstrates the performance sen-
sitivity to sliding window size. We observe that the through-
put is generally better but not very sensitive when 𝑠 ≥ 5120
compared with 𝑠 = 256, because a larger sliding window
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Figure 17. Throughput sensitivity to Volta architecture.

size amortizes the overhead of updating the sliding window
pointers.

Sensitivity to Batch Size. Figure 16 (b) shows the sen-
sitivity of throughput to the batch size. Larger batch sizes
generally result in better performance due to improved par-
allelism, but if the batch size is too large, it may exceed the
GPU memory capacity (e.g., 𝑏 = 512, 1024 in LV). We observe
that an adaptive batch size approach (discussed in §5) that
considers the remaining memory and entries to be loaded,
which often leads to acceptable performance.

Sensitivity to Divergence Threshold. Figure 16 (c) shows
the sensitivity results of different divergence thresholds (𝑑).
We make the following observations: 1) Work Privatization
(𝑑 < 100%) generally benefits most applications, but can have
a negative impact on a few. 2) The benefits of Work Priva-
tization depend on the specific application, as the trade-off
between work serialization and data locality improvement
can vary. Enabling work privatization without considering
divergence (𝑑 = 0%) can cause a performance loss, as seen
in the case of LV, which achieves only 60% throughput com-
pared to disabling it (𝑑 = 100%). Therefore, the divergence
threshold is a tunable parameter for each application.

Sensitivity to Volta architecture. We conducted the ex-
periment on an NVIDIA V100 GPU, where ngAP-default
uses the same parameters as those used for the 3090 GPU, and
ngAP-best is tuned for the V100. The results are presented in
Figure 17. Our observations indicate that ngAP-default and
ngAP-best achieve a speedup of 3.4× and 6.0× over GPU-
NFA, respectively. The lower speedup of ngAP-default sug-
gests that the default parameters may not be portable enough
for all GPU architectures. Nevertheless, ngAP still achieves
a significant improvement on the V100 compared to prior
works.

Discussion on GPU Architectures. To understand why
GPU architectures result in different performance profiles
for ngAP, which only requires integer operations, we first
analyze their performance under the integer roofline model
of 3090 and V100. As shown in Figure 18, NFA-CG, AsyncAP,
and GPU-NFA are compute-bound, suggesting that their per-
formance may benefit from increased integer capabilities.
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Figure 19. Performance improvement of evaluated schemes
on 3090 compared to executing them on V100.

Figure 19 illustrates the speedup that each evaluated scheme
could achieve on 3090 over V100. We observe that the per-
formance of NFA-CG, AsyncAP, and GPU-NFA is 1.1×, 1.2×,
and 1.1× over V100, respectively. This speedup can be at-
tributed to the compute-bound nature of these schemes, as
depicted in Figure 18, which aligns with the 3090’s 1.1× peak
integer performance compared to V100 (13.1 TIOPS vs. 12.0
TIOPS [3, 4]).

In contrast, ngAP-default and ngAP-best are likely to be
latency-bound (Figure 18), as they exhibit lower compute and
memory efficiency. They achieve even higher performance
improvements of 1.8× and 1.5× on 3090, respectively, com-
pared to the peak integer performance differences between
the 3090 and V100 GPUs (Figure 19), and this can be attrib-
uted to two key factors: First, 3090 has more registers per
thread [3, 4], enabling more complex GPU kernels to have
higher occupancy and hence hiding latency by fine-grained
multithreading [5]. This is supported by the fact that both
ngAP-best and ngAP-default achieve an average achieved
occupancy of 0.62 on 3090, compared to 0.48 and 0.36, re-
spectively, on V100. Second, the 3090 operates at a higher

Table 6. Absolute throughput (in MB/s) with one input
stream for evaluated applications. U: Unsupported appli-
cations.

App HyperScan NFA-CG AsyncAP GPU-NFA ngAP-default ngAP-best
APR 0.03 1.28 U 2.03 0.56 0.56
Brill 1.19 0.98 2.78 0.49 2.44 4.85
CRP1 0.32 1.51 10.56 0.44 7.84 22.34
CRP2 0.16 1.16 8.14 0.23 4.22 6.28
CAV 262.67 U 1.05 U 13.71 38.92
ER 1.6 0.78 2.58 1.63 13.17 36.63
HM 0.04 1.37 13.21 0.27 4.27 6.46
LV 0.02 0.96 0.69 0.21 0.62 0.72
Pro 1.85 1.78 1.29 0.53 8.82 13.65
RF 0.4 0.39 0.67 1.06 5.72 7.57
SM 2.89 1.75 U 1.11 0.88 0.88
Snort 31.54 U 4.29 U 1.36 1.83
YARA 61.31 0.25 1.52 0.79 3.11 3.35
DS 71.91 1.37 10.46 1.11 15.08 45.04
PEN 84.03 1.58 0.08 1.08 1.11 1.16
Bro 285.88 1.69 39.06 1.49 18.78 111.66
EM 1177.86 1.66 35.71 1.74 18.84 133.28
Ran1 138.93 1.64 35.72 1.66 18.87 126.42
Ran5 195.16 1.6 36.79 1.66 18.84 117.47
TCP 57.65 1.66 11.86 1.39 15.65 51.95

SM frequency (13.9 GHz vs. 12.5 GHz), further reducing the
latency, given that cache accesses require a similar number
of cycles [8, 26].
In summary, to improve the performance of ngAP, GPU

architectures could employ techniques that reduce latency
or improve the concurrency to hide latency, while other
schemes are more sensitive to compute resources for integer
operations.

6.4 Latency
We measure the latency of ngAP by evaluating its through-
put in processing a 1 MB input stream. To coordinate all
thread blocks to process the NFAs, ngAP groups all con-
nected components (CC; the total number of CC for the
evaluated application shows in Table 2) into𝑀 groups, and
utilizes each thread block with its own worklist to process
each group. We use 𝑀 = 200 as the default group number
in ngAP-default while ngAP-best tunes to the best𝑀 for
lower latency. Other parameters remain unchanged from
those specified in Section 6. Figure 20 shows the speedup
over GPU-NFA. We observe that ngAP-best results in better
performance compared to prior GPU works by 10.9×, 3.2×,
and 12.0×, respectively.
Table 6 shows the absolute throughput with one input

stream. We observe that HyperScan has an advantage, es-
pecially for the applications with fewer NFAs, resulting in
significantly shorter latency. In this scenario, the level of
input stream parallelism is insufficient to utilize all the com-
pute resources of GPUs. Therefore, we suggest enhancing
ngAP by incorporating speculation or enumeration schemes
(will discuss them in Section 7), allowing ngAP to function
as if operating in a multi-input scenario. This augmentation
would leverage all available GPU resources, resulting in la-
tency improvements. We conclude that while ngAP primarily

focuses on enhancing the throughput of large-scale automata
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Figure 20. Latency results normalized to GPU-NFA. We define throughput (in bytes per second) for a single input stream as
the measure of latency.

applications, it effectively reduces latency compared to prior

GPU schemes.

7 Related Work
This section provides an overview of related work on au-
tomata processing, specifically focusing on the discussed
techniques.

Improving Parallelism. Previous works have attempted
to improve parallelism by enumerating, speculating, or us-
ing hybrid approaches to partition the input stream into
segments and allow them to run in parallel. Enumeration
approaches [30, 38] enumerate all possible active states at
starting locations of input segments, but require significantly
more work. Speculation approaches [36, 43–45, 69, 74, 75]
speculate one active state at an input segment to reduce the
work, but must recompute misspeculated input segments.
Speculative enumeration [27, 70] is a hybrid of these two
approaches. All these approaches focus on DFAs as only one
state is active at any iteration, making it easier to speculate
or enumerate. AsyncAP [35] focuses on NFAs by starting
to process patterns from always-active states in parallel but
performs poorly under imbalanced workloads. In contrast,
Prefetching Always-Active States works on top of ngAP to
improve parallelism and thread utilization. Unlike previous
approaches, our optimization does not require enumeration
or misspeculation handling, resulting in lower overhead. Ad-
ditionally, Prefetching Always-Active States improves data
locality due to optimized worklist scheduling (§ 6).

Reducing Computations. String algorithms [9, 28, 32]
reduce redundant computations by keeping a memoiza-
tion table. However, these approaches cannot be applied
to automata processing. HyperScan [68] transforms a sub-
set of NFAs into string matching, resulting in reduced
time complexity. Other works use multi-striding process-
ing [14, 16, 19] to process a stride at a time, reducing the
total computations on symbols. However, multi-striding ap-
proaches do not scale well for large-scale automata problems,
as the number of state transitions grows exponentially after
transformation. In contrast, Prefix Memoization memoizes

only a small portion of transitions into a look-up table, ef-
fectively reducing computations.

Data Movement and Locality. Many accelerators for
automata processing reduce data movement by in-memory
processing [22, 29, 50–53, 59, 60, 64]. Other than accelerators,
transformation approaches [15, 56, 57] construct new repre-
sentations for automata that have better locality and mem-
ory efficiency, which are complementary to our work. GPU-
NFA [34] loads the topology information of always-active
states into GPU registers, thereby reducing data movement.
In contrast, our work optimizes data locality by new sched-
ules of the worklist with Prefetching Always-Active States

andWork Privatization, which are general to any automata.

8 Conclusions
We present Non-blocking Automata Processing (ngAP)
which allows multiple symbols to be processed concurrently
for automata processing on GPUs, and further broadens
the design space in automata processing on GPUs: On top
of ngAP, this work proposes optimizations focusing on ad-
dressing three identified challenges, poor thread utilization,
redundant computations, and poor data locality. Evaluation
of the synergistic approach demonstrates that our work out-
performs state-of-the-art GPU automata processing engines
significantly across a wide range of emerging applications.
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A Artifact Appendix
A.1 Abstract
This artifact includes the source code of ngAP and scripts
to reproduce the experimental results for the Figure 13, Fig-
ure 14, Figure 20, Table 4 and Table 6. We also provide raw
experimental data collected on the NVIDIA RTX 3090 plat-
form and the Python scripts to generate these figures and
tables.

A.2 Artifact check-list (meta-information)
● Algorithm: HyperScan [68], NFA-CG [77], GPU-NFA [34],
AsyncAP [35], BAP, ngAP,
● Program: CUDA and C/C++ code
● Compilation: CMake 3.24.1, GCC 9.4, NVCC 12.0.1
● Binary: CUDA executables
● Data set:AutomataZoo [67], ANMLZoo [65], and Regex [17]
benchmark suites
● Run-time environment: Ubuntu 20.04 with CUDA 12.0
● Hardware: x86_64 CPU with host memory larger than
32 GB. CUDA-enabled GPU with device memory larger than
24 GB.
● Metrics: Achieved throughput (bytes per second)
● Output: CSV files and running logs
● How much disk space required (approximately)?: 60
GiB
● How much time is needed to prepare workflow (ap-
proximately)?: 1 hour
● How much time is needed to complete experiments
(approximately)?: 27 hours
● Publicly available?: Yes
● Code licenses (if publicly available)?: GNU General Pub-
lic License v3.0
● Archived (provide DOI)?: 10.5281/zenodo.8354806

A.3 Description
A.3.1 How to access. The artifact is archived on Zenodo and
made available on GitHub for any future updates or revisions.

https://github.com/getianao/ngAP
https://doi.org/10.5281/zenodo.8354806

A.3.2 Hardware dependencies. We developed and tested our
work on twoNVIDIAGPUs (RTX 3090 and Tesla V100 SXM2). ngAP
is expected to run onGPUswith a compute capability of no less than
5.0 (Maxwell). Additionally, we recommend users employ GPUs
with device memory exceeding 24 GB to handle large applications.

A.3.3 Software dependencies. All experiments are conducted
under Ubuntu 20.04. The artifact requires the NVIDIA CUDA driver
of version 525.60.13 or later, and CUDA Toolkit version 12.0.1. The
artifact was tested using GCC 9.4.0, Python 3.8, CMake 3.24.1, and
TBB 2020.1. HyperScan relies on GCC 5.3, boost, Ragel, and nasm.

A.3.4 Data sets. All datasets are from publicly available bench-
mark suites: AutomataZoo [67], ANMLZoo [65], and Regex [17].
We convert their automata files to ANML format [65] using MN-
CaRT [11] and VASim [66]. We provide the dataset that is ready to
use in our repository.

A.4 Installation
The environment can be set up via Docker. Follow these steps to
install the ngAP artifact:

$ git clone --recursive \
https://github.com/getianao/ngAP.git

$ cd ngAP && source env.sh
$ ./1_download_benchmark.sh
$ ./2_build_docker.sh
$ ./3_launch_docker.sh

Within the Docker container, do the following steps:

$ ./4_build_all.sh

This step will generate all executables under hscompile/build
and code/build/bin :
● hsrun: HyperScan [68]
● ppopp12: NFA-CG [77]
● asyncap: AsyncAP [35]
● obat: GPU-NFA [34]
● ngap: ngAP

For each scheme, you can check its usage by using the -h option
to display help.

A.5 Experiment workflow
To run the experiments provided by the artifact, please follow the
command below. Please note that these experiments typically re-
quire approximately 27 hours to complete.

$ ./5_run_all.sh

All resulting CSV files will be stored in the result/raw folder,
and log files will be located in raw_results named according to
the timestamp.

A.6 Evaluation and expected results
To generate the figures and tables (Figure 13, Figure 14, Figure 20,
Table 4, and Table 6) from the data in the result/raw folder, use
the following command. The generated figures and tables will be
stored in the result folder.

$ ./6_gen_all.sh

For your reference, we have included results collected on
the NVIDIA RTX 3090, as well as the figures and tables in the
ref_result folder.

A.7 Experiment customization
Users are encouraged to conduct experiments with various param-
eters or additional applications by modifying the configuration file
(under code/scripts/configs) or specifying the options manu-
ally. For more details, please refer to README.md.

A.8 Methodology
Submission, reviewing and badging methodology:
● https://www.acm.org/publications/policies/artifact-review-
badging
● http://cTuning.org/ae/submission-20201122.html
● http://cTuning.org/ae/reviewing-20201122.html
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