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Abstract

Code size is an increasing concern on resource constrained
systems, ranging from embedded devices to cloud servers.
To address the issue, lowering memory occupancy has be-
come a priority in developing and deploying applications,
and accordingly compiler-based optimizations have been
proposed to reduce program footprint. However, prior arts
are generally dealing with source codes or intermediate rep-
resentations, and thus are very limited in scope in real sce-
narios where only binary files are commonly provided. To
fill the gap, this paper presents a novel code-size optimiza-
tion Rol1Bin to reroll loops at binary level. Ro11Bin first
locates the unrolled loops in binary files, and then probes
to decide the unrolling factor by identifying regular mem-
ory address patterns. To reconstruct the iterations, we pro-
pose a customized data dependency analysis that tackles the
challenges brought by shuffled instructions and loop-carry
dependencies. Next, the recognized iterations are rolled up
through instruction removal and update, which are generally
reverting the normal unrolling procedure. The evaluations
on standard SPEC2006/2017 and MiBench demonstrate that
Rol1Bin effectively shrinks code size by 1.7% and 2.2% on
average (up to 7.8%), which respectively outperforms the
state-of-the-arts by 31% and 38%. In addition, the use cases
of representative realistic applications manifest that Ro11Bin
can be applicable in practices.

CCS Concepts: « Software and its engineering — Com-
pilers.
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1 Introduction

In the past decades, computer programs have been continu-
ously gaining new features and growing in size and complex-
ity, which together drive the non-stop need for higher com-
puting horsepower and larger memory capacity [2, 14]. As
such, for smoothly executing programs and efficiently utiliz-
ing the precious resources, especially the memory space and
bandwidth, reducing program footprint becomes essential on
all computing platforms spanning from servers to embedded
systems. For embedded and Internet-of-Things (IoT) devices,
code volume is an overwhelming concern, as it directly im-
pacts the chip area and cost, and further influences the overall
performance and power [29, 42]. On larger machines, such
as desktops, servers and supercomputers, whereas memory
capacity is typically much less limited, code size is nonethe-
less critical for instruction cache (I-cache) performance [43].
Recently, there has been an increasing trend toward unifying
libraries, tools, and frameworks to support cross-architecture
executions [6, 20], including servers and edge devices, which
thus further emphasizes the compacted code across plat-
forms. TensorFlow Lite [40] and BLASFEO [13] are such
representative examples actively expanding the machine
learning and high-performance computing territories from
powerful servers to constrained devices.

Classical techniques, including variable-length instruc-
tion encoding [16, 30], code compression [25, 44], and ISA
modification [45], are designed to reduce the size of code.
Program footprint can also be lessened by compiler-based
similar code merging [34] and dead-code eliminating [21, 26].
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However, compared to performance boost, code compaction
has not been paid much attention until recently [7-9]. Op-
timal inlining [41] and loop rolling [31] deflate program
sizes through source-code optimizations. Nonetheless, these
compiler-based techniques work on source code or inter-
mediate representation (IR) and can be exceedingly limited
in the following scenarios: 1) whereas with size-related op-
tions being provided in modern compilers (such as -0Os in
Clang/LLVM), code size issue is more likely to bother when
binaries get deployed, particularly when binaries weren’t
optimized for code size; 2) source codes are not provided
for proprietary reasons, which is a paradigm in commercial
situations (e.g., mobile applications submitted on the Google
and Apple store); 3) the code is hard to recompile, particu-
larly for legacy applications which have no source available
or require a lot of effort to be ported. In addition, for embed-
ded systems, the development may largely rely on assembly
programming, thus causing the absence of source code.

Aiming to reduce code size at binary level, we propose
Rol1Bin to revert the loop unrolling, which is heavily used
to optimize execution speed at the sacrifice of program foot-
print. Ro11Bin accepts a binary file as input. First, it analyzes
the assembly code of the input file, identifies unrolled loops
and then infers the unrolling factor by examining regular
memory address patterns. Next, it locates specific instruc-
tions which are used as anchor-points for each iteration, and
then groups instructions which are supposed to be in the
same iteration. Using a customized data dependency analysis,
we increase the optimization opportunities by overcoming
the limitations of loops with shuffled instructions and loop-
carry dependencies. Finally, it rolls these loops into the ones
with smaller code size and produces a new shrunk binary
file. In addition, profiling data is introduced to guide the
loop rerolling strategy, maintaining the performance of the
optimized binary.

The contributions of this paper are:

o we highlight the critical need of performing binary-
level optimizations to reduce code size and propose a
novel design Rol1Bin to systematically identify and
reroll the expanded iterations.

e through fine-grained iteration probing and optimized
instruction clustering, our design efficiently covers a
larger portion of unrolled loops than prior arts, bring-
ing in more rerolling opportunities.

e the evaluations on benchmark suites and real applica-
tions demonstrate that our design reduces code size
effectively without source code, outperforming the
state-of-the-arts.

The paper is organized as follows. Section 2 introduces the
background and motivates the binary-level code compaction.
Section 3 elaborates the proposed design. Section 4 presents
the experimental methodology, and Section 5 analyzes our
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experimental results. Related work is covered in Section 6.
The paper is concluded in Section 7.

2 Background & Motivation

To compile a program, the compiler’s front-end translates
the source code into architecture-independent IR. Next, the
middle-end, e.g., opt of LLVM, performs multiple optimiza-
tion passes to augment the IR. Then, the compilation process
is concluded by the back-end to translate the IR to binary
machine code, which is finally distributed and executed on
the target platform. As a classical optimization technique,
loop unrolling is frequently used in compilation and works
directly on IR, but it greatly affects the final binary code in
both performance and code size.

In the remainder of this section, we first introduce the
loop unrolling optimizations in the compilation. Then, we
motivate the binary-level loop rerolling design.

2.1 Loop Unrolling

Loops are the predominated structures in almost all pro-
grams, and thus commonly transformed by compilers for per-
formance improvement. Unrolling is a representative trans-
formation to accelerate the loop execution. With unrolling,
we replicate the original loop body multiple times, and then
correspondingly adjust the terminating conditions and it-
erating step, thus amortizing the branching overhead. The
number of replication times is called the unrolling factor, and
the expanded loop is termed as unrolled loop (conversely,
the original loop is often termed rerolled loop). Apparently,
unrolling increases the number of instructions, thus poten-
tially enabling further optimizations such as instruction re-
ordering, which intermingle the instructions between loop
iterations.

To illustrate the unrolling, Figure 1 presents an example
loop, which is extracted from SPEC2006 and simply per-
forms a cumulative sum of multiply-and-subtract calcula-
tions. With an unrolling factor of two, the loop in Figure 1(a)
is repeated twice to transform into the assembly in Fig-
ure 1(b). Among the assembly sequences, instructions L1
- L10 represent the loop body, which consists of two itera-
tions; the final ones L11 - L13 form a loop latch to direct the
loop to repeat or terminate. Clearly, the latch part involves
the actions of update (L11) and comparison (L12), which are
actually linked by an induction register (%rcx). In addition
to advancing the loop iterations, the induction register is ex-
ploited for data movement in the loop body, e.g., %rcx is used
by the movss instructions (L1 - L2). Specifically, %rcx is used
by movss at L1 for retrieving data at address (%rdx+4x%rcx)
to the register %xmm2, which then disseminates through regis-
ter usage (L3). The dissemination shapes a data dependency
chain, as depicted by Figure 1(c), which reflects data flow
traces within the loop body.
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for (int row = m() - 1; row >= @; —-row) {
somenumber s = b(row);
for (unsigned int j = cols->rowstart[row];
j < cols—>rowstart[row + 11; ++j) {

s —= valljl * v(cols—>colnums[j]);
}
v(row) += s x om / vall[cols—>rowstart[row]];
+
(a) Original code with a nested loop.
.Ltmp32364:
~1 movss (%rdx,%srcx,4), %SXxmm2
2 movss 0x4(%rdx,%rcx,4) , Sxmm3
3 cvtss2sd  %xmm2, %XxXmm2
Z |4 movl (%rax,%srcx,4), %sesi
gq 5 mulsd (%rbx,%rsi, 8), S%xmm2
S ]6 mov 1 0x4 (%rax,%srcx,4),%esi
2 |7 cvtss2sd  %xmm3, %xmm3
8 mulsd (%rbx,%rsi, 8), S%Xmm3
9 subsd %Xmm2 , %sxmml
£ ~10  subsd %xmm3, %sxmml
s ~1 addq $0x2, %rcx
é.{lZ cmpgq %rex, %srbp
S Li13  jne .Ltmp32364

(b) The sequence of assembly code with two unrolled iterations in

the loop body.

(c) Data dependency graph of instructions in the loop body.

Figure 1. A loop example extracted from 482.sphinx3 in
SPEC2006.

2.2 Reroll to Reduce Code Size

Essentially, loop unrolling attempts to enhance a program’s
execution at the expense of its code volume, which thus may
exacerbate the issue of code size on resource-constrained sys-
tems. From Figure 1(b), we can see that unrolling introduces
five extra instructions (L2, L6-8, L10), i.e., a 62.5% increase (8
instructions to 13). We constantly observe this phenomenon
on standardized benchmarks including SPEC and MiBench,
which are exhibiting code expansion by 3.2% - 36.7%. In
view of this, it is critical to solving the size issue stemming
from unrolling. Apparently, if we revert the unrolling (i.e.,
rerolling), then the code size can be effectively decreased.
For the example in Figure 1, rerolling achieves a reduction
of 38.5% (i.e., 13 instructions to 8). One straightforward im-
plementation is to regenerate the code by compiling with
size-targeted options like -Os to avoid or curtail unrolling,
which is nonetheless impractical in many scenarios where
only binary formats are being accessible.

To the contrary, binary-level rerolling requires no source
code or IR, thus significantly extending the applicability. In
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principle, the workflow of rerolling at binary level should
be: 1) recognize loop and its unrolling factor; 2) identify the
iterations; 3) fold the unrolled loop. However, the steps can
be extremely challenging in implementation:

— CI: at binary level, the information stored in instructions
is fragmented and hidden. As illustrated in Figure 1(b),
the expanded loop is dissimilar to the source code or IR,
which possesses high-level semantics like loop modules
or represents in static single assignment (SSA) format.
Accordingly, binary-level rerolling is obliged to system-
atically process the raw instructions to retrieve critical
clues, e.g., inductions and unrolling factors.

— C2: instruction patterns are insufficient to identify the
iterations. In unrolling, multiple iterations are presented
with instructions being mixed up, which thus disrupts
the usual instruction-based analysis. Furthermore, the
expanded instructions are commonly rescheduled as a
routine follow-up of unrolling. For instance, Figure 1(b)
shows the interleaved and reordered instructions from
two iterations. Therefore, instead of relying on instruc-
tions, binary unrolling necessitates more fine-grained in-
vestigations, which can be based on register usages and
address sequence.

— C3: even with fine-grained analysis, iteration identifica-
tion can be burdensome, considering the across-iteration
data dependency. As depicted by Figure 1(c), the two itera-
tions are correlated, hindering the automatic procedure of
iteration restoring. Apparently, a method should be pro-
posed to break up the correlation to progress restoring.

Although with the above challenges, binary-level rerolling
attracted attentions recently to identify and restore the iter-
ations. SubDDG [18] and SuffixTree [35] are such represen-
tative designs, which address the challenge C1I. Particularly,
SubDDG resorts to iteration-level data dependency graph to
check whether a loop can be rerolled, and SuffixTree iden-
tifies each iteration by finding consecutively repeated se-
quences of instructions. Clearly, the two designs are ineffec-
tive to handle challenges C2 and C3, thus missing plenty of
rerolling opportunities. Figure 2 reports the rerolling results
of both the illustrated snippet in Figure 1 and the whole
program of 482.sphinx3. It indicates that these challenges
limit the effect of existing binary-level rerolling techniques.

Desired — 5 7

SubDDG | 0 ‘ 3

| | |
0 2 4 0 5

# of instructions Reduce Size (/KB)

Figure 2. The reduction in instruction count and code size
for the motivating example and 482. sphinx3 using existing
techniques and the comparison to desire.
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Figure 3. Overview of Rol1Bin.

3 Binary-level Loop Rerolling

In this section, we present Ro11Bin, a novel code reduction
technique that works at binary level to effectively capture
and fold up unrolled loops. To achieve this, Ro11Bin scruti-
nizes the binary program to locate the loop snippet, analyzes
the registers and addresses to unveil the iterations, and even-
tually rolls back the loops to compact code. Whereas focusing
on code size, Ro11Bin extends the design to support profiling
guidance and binary layout rearrangement, which respec-
tively helps preserve desired performance and shrink the
final executable.

3.1 Overview

RollBin takes binary files as input, and produces a new
executable with reduced code size after conducting loop-
based optimizations. Around the loop identification and
transformation, the whole procedure can be divided into
four phases, each of which corresponds to one modular com-
ponent of Ro11Bin . As illustrated in Figure 3, Rol1Bin ful-
fills the desired reduction by going through multiple stages:
Loop-locator to identify the loops, Iter-prober to anchor
the iterations, Inst-assigner to assign each instruction to
its iteration, and Code-transformer to revise the code.

As the forefront phase, Loop-locator aims to recognize
the unrolled loops via the induction register, which marks
one potential loop as introduced in Section 2.1, together with
its associated memory operands, and further obtains the crit-
ical unrolling factor to decide the iteration times. With the
induction and factor being carried onward, Iter-prober
examines the instructions to filter out those depending on
the induction. The selected instructions, termed as seeds, are
essentially signaling the origins of iterations in the unrolled
loops. Thus they are forwarded to next phase Inst-assigner
to pinpoint and cluster the instruction sequence of each iter-
ation. The locating is realized by investigating data depen-
dency propagating through seed instructions. After cluster-
ing, the final stage Code-transformer comes into play to
fold up the iterations to counteract the native unrolling.

3.2 Identify Unrolled Loops

In this phase, the Loop-locator component of Ro11Bin in-
tends to prepare for investigating the loops in the upcoming
stages, and thus emphasizes on delimitating the loop re-
gions and conjecturing the vital attributes. Whereas being

pre

.Ltmp32364:
movss (%rdx,%rcx,4), %Xmm2
[ movss  @x4(%rdx,%rcx,4), Sxmm3 |

cvtss2sd %xmm2, %Xxmm2
movl (%rax,%rcx,4), %esi
mulsd (%rbx,%rsi, 8), %Xmm2
movl 0x4 (%rax,%rcx,4), %esi
cvtss2sd sxmm3, %xmm3
mulsd (%rbx,%rsi,8), %xmm3
subsd %Xmm2,, Sxmml
[ subsd %xmm3,, %xmml ]
addq $0x2, %rcx
cmpq %rcx, %rbp

jne .Ltmp32364

'

exit backedge

Figure 4. The sequence of assembly code of the motivating
example. The instructions belong to different loop iteration
are highlight in different colors.

0x4

(%rdx,%rcx,4) 0x4(%rdx,%rcx,4)
0x4

(%rax,%rcx,4) 0x4(%rax,%rcx,4)

Figure 5. Two monotonically increasing sequences extracted
from the motivating example. They are based on the same
induction rcx and grow by 0x4.

characterized by repeated sequences, unrolled loops distin-
guish from usual replicated lines on the regular memory
patterns and final wrapping-up instructions, which are thus
exploited for loop identification. Therefore, Ro11Bin iden-
tifies unrolled loops by detecting regular memory address
sequences to eliminate interference from instruction order.

In detail, Ro11Bin first detects the jump or branch instruc-
tions to locate the loops, and then selects the inductions,
which are carried out along the loop execution. Specifically,
Rol1Bin focuses on the inner-most loops within a single
basic block because compilers tend to unroll small loops
with simple control flow. Next, the inductions' are utilized
to backtrack the associated memory addressing within the
loop. Those addresses form a regular sequence, and mean-
while the associated instructions are only differing on the

11t should be noted that whereas multiple inductions may exist in one single
loop, any one is sufficient for the backtracking.
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.Ltmpl .Ltmpl

movl  $0x@, (%rdx) movl  $0x@, (srdx)
movl $0x0, 0x4(%rdx) movl $0x0, 0x4(%rdx)
addq $0x20, %rdx movl $0x0, 0x8(%rdx)
movl $0x0, -0x18 (%rdx) movl $0x0, 0xc(%rdx)
movl $0x0, -0x14(%rdx) movl $0x0, 0x10(%rdx)
movl  $0x0, -0x10 (S%rdx) movl  $0x@, Ox14(%rdx)
movl $0x0, -0xc(%rdx) movl $0x0, 0x18(%rdx)
movl  $0x0, -@x8(%rdx) movl  $0x0, Oxlc(%rdx)
movl $0x0, -0x4(%rdx) addq $0x20, %rdx

cmpq %rdx, %rcx cmpq %rdx, %rcx

jne. .Ltmp1 jne. .Ltmpl

Figure 6. Example of rearranging shuffled instructions. The
rearrangement moves the instruction operating on the induc-
tion to the leading of the loop latch, yielding a monotonically
increasing sequence.

displacement of the address, but completely identical on op-
code, index register, base register and scaling factor. In the
example from Figure 4, the memory addresses in the first
two instructions movss form a regular sequence with an in-
terval of 4, so do another two instructions movl. Figure 5 lists
the extracted memory accesses based on the induction rcx.
Apparently, the sequence is monotonically increasing with
a fixed interval 0x4, manifesting a clear unrolling pattern.
Whereas being desired, monotonicity is not always there
because of the instruction rescheduling performed in compi-
lations. As a result, an extra step is necessitated to rearrange
the accesses to expose a monotonous sequence. While the
counter-updating instruction can be inserted in the loop
body, thus breaking the monotonous sequence, Ro11Bin re-
locates the instruction to the leading of the loop latch and
then adjusts the memory access offset. To provide a clearer
explanation, Figure 6 shows another example with instruc-
tion rescheduling. The instruction addq, performing integer
addition on the induction rdx, makes the base addresses of
instructions different, preventing them from establishing a
monotonically increasing sequence. Rol1Bin moves the in-
struction addq and modifies correlative memory access to
discover the monotonicity.

In addition to checking unrolled loops, the collected ad-
dresses can be further used to infer the unrolling factor,
which directly indicates the iteration times. For the exam-
ple in Figure 4, there are two addresses in a monotonous
sequence which are 0x4 apart, conveying a two-time un-
rolling. Actually, the address-based factor needs to be aligned
with the increment/decrement interval, which co-exists with
the induction as an immediate (e.g., "0x2" in the instruction
"addg $0x2 %rcx"). Generally, the immediate must be di-
visible by the unroll factor; otherwise, the identified loop is
disregarded as unrolled, terminating the rerolling procedure.

3.3 Anchor the Iterations

Once deciding the probable unroll factor, we next traverse
all memory-accessing instructions related to any induction,
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movss (%rdx,%rcx,4), %sxmm2  #(0-0)/4=0 — iter 0
movss 0x4(%srdx,%rcx,4), sxmm3 #(4-0)/4=1— iter 1

#(0-0)/4=0 — iter 0
#(4-0)/4=1— iter 1

movl  (%rax,%rcx,4), %esi
movl  0x4(%rax,%rcx,4), %esi

Figure 7. Example of two groups of seed instructions which
are assigned with a numeric identifier.

which are further analyzed to speculate their correspond-
ing iterations they belong to. The memory addresses are
requested to form a monotonous sequence with a fixed in-
terval and to be the same length as the probable unroll fac-
tor. So the instructions associated with a memory-access
sequence are equivalent across iterations and each one is
assigned to the appropriate iteration. The iteration residence
is denoted using a numeric identifier, which is calculated as
(displacement — start) [step. More specifically, the displace-
ment is the integer added to the memory address while the
start and step correspond to the first displacement and the
interval in the memory sequence, respectively.

Figure 7 shows how we anchor the seed instructions in the
motivating example. There are two monotonically increasing
sequences with a length of two. Two instructions in each
sequence are assigned to iteration 0 and iteration 1, respec-
tively, because the loop is unrolled into two iterations. These
marked instructions, also known as seed instructions, essen-
tially communicate the original information of iterations in
the unrolled loops. The corresponding iterations of other in-
structions which have no memory access are retrieved using
these seeds, as we discuss in the following subsection.

3.4 Cluster the Instructions

With the collected loop attributes, we then strive to recon-
struct the iterations by putting back each instruction to its
native loop instance. The reconstruction is accomplished
using customized data dependency analysis as follow.

movss .
> iter 0
iter 1/ icvtss2sd

mov L

mulsd

“subsd”
3 -S-U-b-S-d- -)X

Figure 8. Data dependency analysis propagates the iteration
number and intercepts by wall instructions. Seed instructions
are represented by solid-line boxes.

Naturally, data dependency is employed to cluster the in-
structions into their native loop iterations. To this end, each
instruction is expected to be assigned an iteration number,
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Algorithm 1: Cluster all instructions into loop itera-
tions.

Function ClusterInstructions(LoopInsts):
foreach inst € LoopInsts do
if IsSeedInst(inst) then
‘ Updatelteration(inst);
else if CheckDependency(inst) then
i < GetLargerIteration(inst);
Assignlteration(inst,i);
Updatelteration(inst);
unction UpdateIteration(inst):
i « Getlteration(inst);
foreach dependinst € GetDependInsts(inst) do
if IsWalllnst(dependInst) then
‘ continue;
h « Haslteration(dependInst);
if not h then
| j <« Getlteration(dependInst)
if hori > j then
Assignlteration(dependInst,i);
Updatelteration(dependInst);

'

which was already attached to the seed instructions of each
iteration. The data dependency graph is constructed based
on the register usage in context. The instructions with reg-
ister reading rely on their definition instruction until the
value in the register is updated. Along the data dependency
graph, the iteration number propagates among instructions
to progress the clustering. Figure 8 presents the data depen-
dencies in the motivating example. The third instruction
cvtss2sd depends on the first instruction movss because
the operands used in cvtss2sd are defined in movss most
recently, which enables the iteration number of movss to
be propagated to the cvtss2sd. However, the clustering in
practices is more complicated, because of the fact that data
dependencies usually span multiple iterations. One represen-
tative scenario is that a variable is shared among iterations,
and this causes results calculated in the preceding iteration
to be used in the next round. For instance, the last two subsd
instructions in Figure 8 operate the same register xmm1 to
take a cumulative subtraction. Even though the latter one
depends on the former one, they should not be grouped into
the same iteration.

To tackle the across-iteration dependency, we introduce
special wall instructions, which intercept the undesired num-
ber propagation to break up the dependency. Particularly,
wall instructions are defined as either seeds or those recur-
sively depending on other wall instructions. Algorithm 1
outlines the iteration number propagation strategy taking
advantage of wall instructions. In detail, the process works
by scanning all instructions in the loop and then performs a
bottom-up propagation to cluster instructions. Instructions
are assigned with iteration numbers via their dependencies.

Tianao Ge, Zewei Mo, Kan Wu, Xianwei Zhang, and Yutong Lu

When an instruction reuses the calculation results in previ-
ous iteration, it will depend on different iterations, then the
larger iteration number will be chosen to propagate. Unless
the instruction is a wall instruction, all dependencies will be
checked and updated recursively once it is assigned with an
iteration number.

3.5 Transform the Code

After completing the loop reconstruction, Ro11Bin proceeds
to eradicate all or partial iterations to reroll the loop. How-
ever, before activating the rerolling, Ro11Bin should validate
the reconstructed iterations to ensure they are isomorphic.
Iterations are deemed as isomorphic only if they have iden-
tical structure and each instruction is of the same opcode
and operands with its counterpart. Nonetheless, the isomor-
phic criteria might be exceedingly rigorous, considering that
iterations can be semantically equivalent but structurally dif-
ferent, which is typically caused by compiler-directed code
adjustments. As we focus on solving the dependency issue
when grouping, we adopt simple transforming in our design
by removing additional mov instructions which are redun-
dant. Then we ensure that any two groups are isomorphic
by the following rules: 1) the number of instructions in each
group is the same; 2) the corresponding instructions in each
group have an identical opcode; 3) they contain only jump
instructions or operations on inductions in the loop latch.

Once passing the validation, Ro11Bin advances to reroll
the loops, which involves iteration removal and latch update,
which are pretty straightforward to implement. However,
emphasizing solely on code size inevitably poses a risk of sig-
nificant performance degradation, hindering the wider adop-
tion of Rol1Bin . To overcome the issues, Rol11Bin further
incorporates performance profiling data to guide the loop
rerolls. In principle, rerolling degree should be negatively
proportional to the loop’s criticality on performance, e.g.,
light-or-none rerolling on loops predominating the overall
execution. Specifically, Rol11Bin is extended with a thresh-
old RerollFraction to control loop rerolling with profiling.
Based on the ascending order of execution frequency, the
top RerollFraction of loops won’t be rerolled, while the
other loops with lower executed frequency will be rerolled
completely. Once getting folded, the loop instructions will
be generated into a relocatable file, whose .text section
shrinks in size.

3.6 Implementation

Figure 9 shows the pipeline of our technique. It bases on
the LLVM Compiler Infrastructure [22] and BOLT binary
optimizer [27], which help handle disassembly and modifi-
cation of binary files. The Linux Perf tool is used to measure
the number of executed times for loops. The profiling data
obtained via sampling will be processed and mapped to as-
sembly code. To reduce the size of text section during binary



RollBin: Reducing Code-Size via Loop Rerolling at Binary Level

LLVM & BOLT
BIN i RollBin
10101 Disassembly Loop-locator
. (E==A 1
1 construction Iter-prober readjustment

m [ terpbe ] oy ot
i Profile data —
Tl e PR b [ mstessgner || rewing

L_|Profiler]
optional

Figure 9. The processing pipeline of our implementation.
The inputs include the target binary and optional profiled
data. The output is a program with smaller code size.

Code-transformer

rewriting, relocation information is required to adjust func-
tion position. Relocation can be remained when linked with
specific options, such as —emit-relocs. For stripped bina-
ries with no text relocation, reconstruction of relocation
information [28] can be applied to enable function position
modification.

Simply replacing the text section tends to leave space bub-
bles, wasting storage. To fix the issue, we extend Rol11Bin to
adjust the layout after rerolling loops for storage reduction
in the final executable. We reimplement the binary rewrit-
ing module in BOLT and try to adjust all section offsets to
a compact structure to discharge these empty spaces. Cor-
responding information such as program header table and
section table is updated to ensure the program can be loaded
in memory and find the binary entry correctly.

4 Evaluation Methodology
4.1 Experimental Setup

Hardware & Software: We conduct experiments on Linux-
based servers featuring AMD EPYC 7742 CPU, which is

of 2.25 GHz (3.4 GHz boost) frequency, private L1/L2 of

94 KB/512 KB, and shared L3/memory of 256 MB/256 GB. For

the software, OS is CentOS 7.9 (kernel version 3.10.0), sup-
porting Linux’s perf (version 4.15.18), and compiler is Clang/L-
LVM 13.0.0.

Benchmarks: To evaluate Rol1Bin in a variety of sce-
narios, we run experiments on different benchmark suites,
including SPEC2006 [17], SPEC2017 [5], and MiBench [15],
which are the most widely used workloads in general-purpose
and embedded systems. In addition, TSVC [1], a loop-heavy
micro-benchmark, is included for better understanding the
benefits gained by Rol1Bin rerolling. TSVC consists of 151
kernels, each containing a single loop. Moreover, we perform
use-case studies on TensorFlow Lite [40] and BLASFEO [13],
which are two realistic applications of machine learning and
linear algebra, respectively. Table 1 briefly summarizes the
benchmarks.

In terms of binary-code construction, we build the work-
loads using Clang/LLVM with appropriate optimizations. For
SPEC 2006/2017, MiBench and TSVC, we repeatedly com-
pile by enumerating -0s’ (-0s with loop unrolling being
enabled), -02 and -03, which may greatly affect the program
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Table 1. Evaluated Applications.

Category Suite Domain
SPEC2006 General-Purpose
Standard SPEC2017 General-Purpose
MiBench Embedded System
Micro-bench TSVC Vectorization
Real-app TensorFlow Lite | Machine Learning
BLASFEO Linear Algebra

footprint. To build TensorFlow Lite and BLASFEO, we in-
stead adopt the officially recommended options to conform
to the real usages.

4.2 Designs and Metrics

Contending designs: To evaluate the effectiveness of our
proposed design, we compare Rol1Bin against the baseline
and prior arts, which cover both binary-level and IR-level
code size reduction techniques. Primarily, we study and com-
pare the following approaches:

— Baseline. Default Clang/LLVM with selected option,
which can be -0s’, -02 or -03.

— RollBin. The proposed design, which applies binary-
level rerolling atop of the Baseline by analyzing mem-
ory addresses and data dependencies.

— SubDDG [18]. A binary-level rerolling technique which
operates on independent loops

— SuffixTree [35]. A binary-level rerolling technique
using suffix trees to identify repeated instructions.

— ROLAG [31]. The state-of-the-art rolling approach at
IR-level.

Metrics: As the predominant metric to measure rerolling
effect, code size is denoted by the text segment of the binary
file. To quantify code reduction, we first get the absolute
value in KB, by calculating the difference between Baseline
and the studied design, and then get the percentage as:

Sizegif

Reduction (%) = —
1Z€pgse

To evaluate performance, we generally use the profiled ex-
ecution time, and then convert into a slowdown ratio. The
execution time is averaged across ten repeated runs. As for
the final executable, we directly consider the raw file size.

5 Results and Analysis

Following the aforementioned methodology, we conduct ex-
periments to study the listed design approaches over the
pertinent workloads. This section presents and analyzes the
collected results to demonstrate Ro11Bin’s effects from mul-
tiple facets, including code size, executable size, and perfor-
mance.
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Figure 10. Code size reduction on SPEC2006/2017 over -0s’. Only a subset of the workload is shown. Out of 43 benchmarks:
40 shrink in size, 3 remain unchanged. The most significant reduction achieves on 482. sphinx3 (5.4%). The average reduction
on all 43 benchmarks is 1.7%, outperforms the state-of-the-art by 31%.

5.1 Code Size

We evaluate the Ro11Bin design across SPEC2006, SPEC2017,
and Mibench benchmark suites, and compare to the closest
state-of-the-arts SubDDG and SuffixTree, which are like-
wise rolling loops at binary level. The code reduction results
of SPEC and MiBench are respectively reported in Figure 10
and Figure 11 .

From Figure 10, we can see that Rol1lBin is effectively
reducing code size of SPEC benchmarks, and performs better
than SubDDG and SuffixTree in most cases. Relative to the
Baseline, Rol1Bin achieves an average reduction of 1.7%,
beating the 1.3% and 0.9% of the two contending designs.
Particularly, Ro11Bin reports the maximal reduction of 5.4%
on 482.sphinx3, which is a loop-heavy benchmark favoring
our rerolling techniques. Note that on certain benchmarks
like 462.libquantum, 631.deepsjeng_s and 541.leela_r, SubDDG
shows very trivial effect, whereas Ro11Bin still reaches con-
siderable reductions. These are the cases that loop-carry-
dependency exists among the majority of loops, such as
accumulation of arrays and calculation across multiple iter-
ations, causing iterations in an unrolled loop can’t be dis-
tinguished by data dependency graph. On the other hand,
Rol1Bin well addresses the issue by introducing the concept
of wall instructions (see Section 3.4). Meanwhile, although
SuffixTree is capable to reroll more loops than SubDDG, it
only benefits loops with repetitive code structure. Since
SuffixTree is seriously restricted by the order of instruc-
tions, the normal instruction flow is disrupted and further
looping opportunities are missed, which can be reflected on
482.sphinx3 and 544.nab_r. Instead, Ro11Bin well tolerates
the instruction shuffling, and hence realizes remarkable re-
ductions on these applications (38.4% and 82.4% better than
SuffixTree on 482.sphinx3 and 544.nab_r).

2Due to the limited space, the figures show a subset of the workloads,
together with a mean of the complete set.
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Figure 11. Code size reduction on MiBench over -0s’. Only
a subset of the workload is shown. Out of 24 benchmarks: 14
shrink in size, 10 remain unchanged. The most significant
reduction achieves on gsm (7.8%). The average reduction on
all 24 benchmarks is 2.2%, outperforms the state-of-the-art
by 38%.

Similarly, Figure 11 presents the code size results of MiBench.
Not unexpected, Ro11Bin attains more promising reductions
on those embedded applications, which are extremely stress-
ing on code size. Overall, Rol1Bin smoothly reduces the
code size of most applications and reports an average re-
duction of 2.2% (up to 7.83%), which are substantially better
than SubDDG and SuffixTree. It is noteworthy that for par-
tial applications with very limited amount of instructions,
none of the three evaluated designs comes into operation.
adpcm_c is one such representative example having only two
. files with less than 500 instructions. We further repeat our
experiments over different optimization levels: -02 and -03,
and summarize the code size reduction in Table 2. Compared
with -0s’, the complex transformations in higher optimiza-
tion levels lead to the dramatic expansion of binary and make
it harder to reroll, which results in a lower reduction by loop
rerolling. However, it indicates that RollBin outperforms the
other two approaches at these optimization levels.
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Table 2. The average code size reduction for SPEC2006/2017
and MiBench over different optimization levels.

Suit Flag | SubDDG SuffixTree RollBin
-02 0.40% 0.77% 0.93%

SPEC2006/2017 -03 0.39% 0.74% 0.89%
. -02 0.28% 0.35% 0.50%
MiBench 03 | 0.28% 0.33% 0.50%

To better understand Ro11Bin’s efficacy, we further collect
the fundamental statistics of loop rerolling, which are #Lps
and Size as listed in Table 3. #Lps and Size respectively
denote the amount of the successfully rerolled loops and the
absolute size of code reduction. From the table, we see that
Ro11Bin rerolls more loops than the peer designs, therefore
bringing in a more significant size reduction. For example,
510.paresr_rachieves #Lps of 1389 and Size of 205 KB, which
are twice the quotas of SuffixTree and SubDDG. Overall,
Rol1Bin is also effective on absolute reductions and respec-
tively reduces total code size by 173 KB, 428 KB and 65 KB
across SPEC2006/2017 and MiBench.

Table 3. Detailed statistics of loop rerolling on
SPEC2006/2017 and MiBench. #Lps is the amount of
the successfully rerolled loops, and Size represents the
absolute size of code reduction in KB.

Suite | Benchmark SubDDG  SuffixTree RollBin
#Lps Size #Lps Size #Lps Size

400.perlbench 41 4 48 5 51 5
401.bzip2 8 o 11 1 13 1

© 403.gcc 56 4 66 7 76 8

g 447 dealll 383 38 454 48 544 60

N e e

8 450.soplex 49 9 53 9 67 11

& | 456.hmmer 49 4 68 5 80 7
464.h264ref 100 9 131 15 166 21
483 xalancbmk 255 17 261 18 262 19
sum (total) 1111 100 1332 137 1551 173
508.namd_r 420 27 429 28 435 29
510.parest_r 967 123 934 105 1389 205

~ 511.povray_r 79 7 81 6 105 11

p= 526.blender_r 590 53 690 75 811 92

N . e

;Lq) 620.omnetpp_s 17 1 20 1 26 1

& |623xalancbmk_s 215 15 223 17 239 18
638.imagick_s 56 7 78 14 99 18
657.x7_s 13 1 12 1 14 1
sum (total) 2758 264 2920 289 3654 428
bitcount 0 0 0 0 0 0
ghostscript 59 7 76 1 108 17
gsm 1 0o 2 0 6 2

§ jpeg_d 29 4 39 6 47 7

U

2 | pep 27 2 30 3 32 3

= |tiff2bw 3. 3 46 6 55 6
tiff2dither 28 2 43 5 52 6
typeset 16 0 18 3 25 3
sum (total) 287 26 403 51 508 65
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Figure 12. Code size reduction achieved by RoLAG and
Rol1Bin and a comparison with ideal case across TSVC ker-
nels, sorted by Rol1Bin and RoLAG’s reduction numbers.

5.2 Compare to IR-level Rerolling

Alternatively, loop rerolling can be performed at IR-level,
albeit greatly limiting the scope to specific situations with
source codes available. To reinforce the evaluation, we next
compare Rol1Bin against RoLAG, which is the most recent
IR-based rolling approach. To be consistent on evaluation,
we use the same TSVC micro-benchmark to assess the ap-
proaches. To align with RoLAG, the inner loops are forced to
be unrolled by 8 and compiled with -Os.

Figure 12 shows the reduction on all TSVC kernels ob-
tained by each technique and the gap from ideal situations
where loops are completely rerolled. On average, Ro11Bin
and RoLAG achieved similar reductions while ROLAG out-
performs Rol1lBin by a small margin about 2 percentage
point (21.3% for Ro11Bin and 23.5% for RoLAG). Even without
source code level information, Ro11Bin still performs well
on loop rerolling. For the kernels rerolled by both, Ro11Bin
attains better results than RoLAG. This is because Rol1Bin
rerolls loops completely, while RoLAG partially rerolls loops
and creates a new inner loop which takes up extra space.

Besides evaluating the effectiveness, these results also in-
dicate the limitations of both Ro11Bin and RoLAG. The most
prominent of failure are the loops with multiple basic blocks,
which both Ro11Bin and RoLAG fail to handle. Inter-iteration
loop optimizations, such as tiling and vectorization, can also
disrupt the pattern between iterations, thus making it diffi-
cult to extract the original loop-body from the binary. The
remaining cases are caused by the isomorphic of iterations.
Optimizing certain iterations breaks the isomorphic, and
Rol1Bin identifies them as non-unrolled loops. Such cases
can be covered by adding more code-transforms to Rol1Bin,
e.g., semantically identical instructions replacing.

5.3 Case Study: Real Applications

In addition to the classical benchmark suites, we extend the
evaluation by incorporating two real applications, Tensor-
Flow Lite and BLASFEQ, which are widely used in embed-
ded and edge devices. TensorFlow Lite is a lightweight deep
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learning framework for mobile devices. Containing a rich
of machine learning layers like convolution and pooling,
TensorFlow Lite is predominated by loop calculations. In
particular, we select a C++ pre-built native binary provided
by the official which is used to benchmark a TFLite model
and its individual operators. Evaluation is performed on the
linux x86-64 version binary with default flags (i.e., -02) [39],
and the results show that Ro11Bin deflates the code by 81 KB
or by 1.9% over 2024 unrolled loops.

The other application, BLASFEQ, is a library of BLAS-
and LAPACK-like routines optimized for embedded infras-
tructures. At its core, BLASFEO employs plenty of hand-
crafted assembly-coded dense linear algebra kernels which
are challenging for end users to perform further revisions.
Directly fed into the assembly, Ro11Bin can continue opti-
mizing to shrink code size. To faithfully model the real usage,
we build the library with the default option (i.e., -02 -mavx2
-mfma) [12]. With the rerolling technique of Ro11Bin , BLAS-
FEO successfully folds up 669 loops out of 3430, compacting
code size by 24 KB (i.e., a 1.6% reduction). It demonstrates
that Rol1Bin can be applied to shrink real applications.

5.4 Executable Size

Despite highlighting instruction code, Rol11Bin is expected
to influence the eventual executable, and additionally en-
ables to adjust the post-rerolling sections of the application.
For evaluation, we measure the final executable file size
among the benchmark suites, and list the overall results in
Table 4. Whereas possibly compromised by the OS-layer rou-
tines (e.g., 4K alignment for segment loading), Ro11Bin still
shows an observable file-size reduction. It results in average
reductions of 0.9% (total 647 KB) on SPEC2006/2017 and 1.1%
(total 72KB) on MiBench. For the remaining benchmarks
who contain one binary file, the largest reduction is around
84 KB, achieved on TSVC.

Table 4. Binary size reduction achieved by Rol11Bin on all
evaluated applications. Abbreviations used: MEAN and MAX,
mean and maximum file size reduction; PMEAN and PMAX,
mean and maximum percentage file size reduction; SUM,
total file size reduction.

MEAN PMEAN MAX PMAX SUM

SPEC2006/2017 17KB 0.9% 218KB 3.3% 647KB
MiBench 3KB 1.1% 18KB 4.2% 72KB
TSVC 13KB 10.0% N/A N/A N/A

TensorFlow Lite 84 KB 1.5% N/A N/A N/A
BLASFEO 25KB 1.4% N/A N/A N/A

5.5 Performance

Even though endeavoring to condense program code, loop
rerolling may adversely affect performance. Consequently,
we further gauge Rol1Bin’s intertwining effects on code size
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and execution performance, by tuning the profiling-based
knob to configure the trade-offs. We adjust the loop fold-
ing degree, denoted by RerollFraction threshold to direct
Rol1lBin to only operate on the non-performance-critical
loops, equaling to protect the critical ones. Figure 13 con-
veys that performance-unaware strategy (i.e., set threshold
to 1) downgrades performance by 15% on TSVC. With the
help of profiling guidance, Ro11Bin succeeds to lower the
slowdown to a very moderate level (~1%) when threshold is
set to 0.8, meanwhile maintaining comparable size reduction
of 12%. On 456.hmmer (SPEC2006) and TensorFlow Lite, due
to most rerolled loops with a single block not being hotspots,
varying thresholds have little impact on performance. Ap-
parently, trade-off optimizations can be explored to exert
Rol1Bin’s full potential, but this is beyond the focus of this
paper and thus left for future work.
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Figure 13. Code size reduction and performance slowdown
under varying RerollFraction thresholds.

6 Related Work

Code size optimization: Optimizations for code size have
been a basic part since the birth of the compiler, but with-
out much attention. Previous approaches reduce code size
by removing the redundant or dead codes segment, such
as common subexpression elimination [3, 24] and deleting
unnecessary code [4, 21]. Function merge [23, 32, 33, 43] is
used to identify and merge similar subsequences in differ-
ent functions. F3M [36] is the state-of-art function merge
technique which uses a hash-based fingerprint to summarize
functions. Function inlining [9, 19] and loop unrolling [10]
improve performance at the expenses of increasing code size,
which are essential in code size optimizations. Theodoridis et
al. [41] introduced a novel inlining search space formulation
which allows massive space reductions to exhaustively find
the optimal inlining decisions. ROLAG [31] creates loops out
of straight-line code based on a bottom-up graph alignment
solution. These code size optimizations all work on IR and
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necessitate the compilation of source code. For the programs
written in assembly, pre-built binaries and library files, they
suffer from the lack of source information and are unable
to be optimized. Rol1Bin performs at binary level and is
orthogonal to these works.

Binary optimization: In recent years, binary optimizers
have become popular, such as Propeller [37], Janus [46] and
Halo [11]. These tools use dynamic runtime information to
reduce the overhead on cache and branch prediction by ad-
justing the code layout in the file. Bolt [27] is an open-source
post-link optimizer built on top of the LLVM framework. It
can boost the performance of real-world applications with
both profile-guided optimizations (PGO) and link-time opti-
mizations (LTO). However, these optimizers only focus on
performance without considering code size. Ro11Bin works
on binary level and can also trade-off between performance
and code size. Safe ICF [38] is a binary-level technique focus-
ing on code size which folds identical functions. It saves code
size with a safe option while keeping the run-time perfor-
mance of the optimized binaries. With performance issues
also taken into account, our approach focuses on unrolled
loops, which are common structures in almost all programs.
SubDDG [18] and SuffixTree [35] are the de-optimizations
of the loop unrolling at binary level, as we discussed in Sec-
tion 2.2. They can only accommodate loops with specific
patterns, while Rol1Bin addresses their limitations and is
more flexible to handle the common cases.

7 Conclusion

While often overlooked, the continuously increasing code
size can be a first-order constraint on almost all computing
platforms. Aiming to alleviate the size issue in a general
fashion, this paper presents a Ro11Bin to reroll loops at bi-
nary level. Through using memory address sequence and
customized data dependency analysis, Ro11Bin is capable to
recognize a greater amount of loops. Experiments on bench-
marks and practical applications show that the design effec-
tively reduces code size, significantly outperforming prior
arts. Moreover, owing to additional considerations on loop
hotness, Ro11Bin enables to trade-off between size reduction
and performance of rerolling.
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