
RollBin: Reducing Code-Size via Loop Rerolling at
Binary Level

Tianao Ge
Sun Yat-Sen University

China
getao3@mail2.sysu.edu.cn

Zewei Mo
Sun Yat-Sen University

China
mozw5@mail2.sysu.edu.cn

Kan Wu
Sun Yat-Sen University

China
wukan3@mail2.sysu.edu.cn

Xianwei Zhang
Sun Yat-Sen University

China
zhangxw79@mail.sysu.edu.cn

Yutong Lu
Sun Yat-Sen University

China
luyutong@mail.sysu.edu.cn

Abstract
Code size is an increasing concern on resource constrained
systems, ranging from embedded devices to cloud servers.
To address the issue, lowering memory occupancy has be-
come a priority in developing and deploying applications,
and accordingly compiler-based optimizations have been
proposed to reduce program footprint. However, prior arts
are generally dealing with source codes or intermediate rep-
resentations, and thus are very limited in scope in real sce-
narios where only binary files are commonly provided. To
fill the gap, this paper presents a novel code-size optimiza-
tion RollBin to reroll loops at binary level. RollBin first
locates the unrolled loops in binary files, and then probes
to decide the unrolling factor by identifying regular mem-
ory address patterns. To reconstruct the iterations, we pro-
pose a customized data dependency analysis that tackles the
challenges brought by shuffled instructions and loop-carry
dependencies. Next, the recognized iterations are rolled up
through instruction removal and update, which are generally
reverting the normal unrolling procedure. The evaluations
on standard SPEC2006/2017 and MiBench demonstrate that
RollBin effectively shrinks code size by 1.7% and 2.2% on
average (up to 7.8%), which respectively outperforms the
state-of-the-arts by 31% and 38%. In addition, the use cases
of representative realistic applicationsmanifest that RollBin
can be applicable in practices.

CCS Concepts: • Software and its engineering→ Com-
pilers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
LCTES ’22, June 14, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9266-2/22/06. . . $15.00
https://doi.org/10.1145/3519941.3535072

Keywords: Code-Size Reduction, Loop Rerolling, Binary Op-
timization

ACM Reference Format:
Tianao Ge, Zewei Mo, Kan Wu, Xianwei Zhang, and Yutong Lu.
2022. RollBin: Reducing Code-Size via Loop Rerolling at Binary
Level. In Proceedings of the 23rd ACM SIGPLAN/SIGBED Interna-
tional Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES ’22), June 14, 2022, San Diego, CA, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3519941.3535072

1 Introduction
In the past decades, computer programs have been continu-
ously gaining new features and growing in size and complex-
ity, which together drive the non-stop need for higher com-
puting horsepower and larger memory capacity [2, 14]. As
such, for smoothly executing programs and efficiently utiliz-
ing the precious resources, especially the memory space and
bandwidth, reducing program footprint becomes essential on
all computing platforms spanning from servers to embedded
systems. For embedded and Internet-of-Things (IoT) devices,
code volume is an overwhelming concern, as it directly im-
pacts the chip area and cost, and further influences the overall
performance and power [29, 42]. On larger machines, such
as desktops, servers and supercomputers, whereas memory
capacity is typically much less limited, code size is nonethe-
less critical for instruction cache (I-cache) performance [43].
Recently, there has been an increasing trend toward unifying
libraries, tools, and frameworks to support cross-architecture
executions [6, 20], including servers and edge devices, which
thus further emphasizes the compacted code across plat-
forms. TensorFlow Lite [40] and BLASFEO [13] are such
representative examples actively expanding the machine
learning and high-performance computing territories from
powerful servers to constrained devices.
Classical techniques, including variable-length instruc-

tion encoding [16, 30], code compression [25, 44], and ISA
modification [45], are designed to reduce the size of code.
Program footprint can also be lessened by compiler-based
similar code merging [34] and dead-code eliminating [21, 26].

https://doi.org/10.1145/3519941.3535072
https://doi.org/10.1145/3519941.3535072

LCTES ’22, June 14, 2022, San Diego, CA, USA Tianao Ge, Zewei Mo, Kan Wu, Xianwei Zhang, and Yutong Lu

However, compared to performance boost, code compaction
has not been paid much attention until recently [7–9]. Op-
timal inlining [41] and loop rolling [31] deflate program
sizes through source-code optimizations. Nonetheless, these
compiler-based techniques work on source code or inter-
mediate representation (IR) and can be exceedingly limited
in the following scenarios: 1) whereas with size-related op-
tions being provided in modern compilers (such as -Os in
Clang/LLVM), code size issue is more likely to bother when
binaries get deployed, particularly when binaries weren’t
optimized for code size; 2) source codes are not provided
for proprietary reasons, which is a paradigm in commercial
situations (e.g., mobile applications submitted on the Google
and Apple store); 3) the code is hard to recompile, particu-
larly for legacy applications which have no source available
or require a lot of effort to be ported. In addition, for embed-
ded systems, the development may largely rely on assembly
programming, thus causing the absence of source code.
Aiming to reduce code size at binary level, we propose

RollBin to revert the loop unrolling, which is heavily used
to optimize execution speed at the sacrifice of program foot-
print. RollBin accepts a binary file as input. First, it analyzes
the assembly code of the input file, identifies unrolled loops
and then infers the unrolling factor by examining regular
memory address patterns. Next, it locates specific instruc-
tions which are used as anchor-points for each iteration, and
then groups instructions which are supposed to be in the
same iteration. Using a customized data dependency analysis,
we increase the optimization opportunities by overcoming
the limitations of loops with shuffled instructions and loop-
carry dependencies. Finally, it rolls these loops into the ones
with smaller code size and produces a new shrunk binary
file. In addition, profiling data is introduced to guide the
loop rerolling strategy, maintaining the performance of the
optimized binary.

The contributions of this paper are:

• we highlight the critical need of performing binary-
level optimizations to reduce code size and propose a
novel design RollBin to systematically identify and
reroll the expanded iterations.
• through fine-grained iteration probing and optimized
instruction clustering, our design efficiently covers a
larger portion of unrolled loops than prior arts, bring-
ing in more rerolling opportunities.
• the evaluations on benchmark suites and real applica-
tions demonstrate that our design reduces code size
effectively without source code, outperforming the
state-of-the-arts.

The paper is organized as follows. Section 2 introduces the
background and motivates the binary-level code compaction.
Section 3 elaborates the proposed design. Section 4 presents
the experimental methodology, and Section 5 analyzes our

experimental results. Related work is covered in Section 6.
The paper is concluded in Section 7.

2 Background & Motivation
To compile a program, the compiler’s front-end translates
the source code into architecture-independent IR. Next, the
middle-end, e.g., opt of LLVM, performs multiple optimiza-
tion passes to augment the IR. Then, the compilation process
is concluded by the back-end to translate the IR to binary
machine code, which is finally distributed and executed on
the target platform. As a classical optimization technique,
loop unrolling is frequently used in compilation and works
directly on IR, but it greatly affects the final binary code in
both performance and code size.
In the remainder of this section, we first introduce the

loop unrolling optimizations in the compilation. Then, we
motivate the binary-level loop rerolling design.

2.1 Loop Unrolling
Loops are the predominated structures in almost all pro-
grams, and thus commonly transformed by compilers for per-
formance improvement. Unrolling is a representative trans-
formation to accelerate the loop execution. With unrolling,
we replicate the original loop body multiple times, and then
correspondingly adjust the terminating conditions and it-
erating step, thus amortizing the branching overhead. The
number of replication times is called the unrolling factor, and
the expanded loop is termed as unrolled loop (conversely,
the original loop is often termed rerolled loop). Apparently,
unrolling increases the number of instructions, thus poten-
tially enabling further optimizations such as instruction re-
ordering, which intermingle the instructions between loop
iterations.
To illustrate the unrolling, Figure 1 presents an example

loop, which is extracted from SPEC2006 and simply per-
forms a cumulative sum of multiply-and-subtract calcula-
tions. With an unrolling factor of two, the loop in Figure 1(a)
is repeated twice to transform into the assembly in Fig-
ure 1(b). Among the assembly sequences, instructions L1
- L10 represent the loop body, which consists of two itera-
tions; the final ones L11 - L13 form a loop latch to direct the
loop to repeat or terminate. Clearly, the latch part involves
the actions of update (L11) and comparison (L12), which are
actually linked by an induction register (%rcx). In addition
to advancing the loop iterations, the induction register is ex-
ploited for data movement in the loop body, e.g., %rcx is used
by the movss instructions (L1 - L2). Specifically, %rcx is used
by movss at L1 for retrieving data at address (%rdx+4*%rcx)
to the register %xmm2, which then disseminates through regis-
ter usage (L3). The dissemination shapes a data dependency
chain, as depicted by Figure 1(c), which reflects data flow
traces within the loop body.

RollBin: Reducing Code-Size via Loop Rerolling at Binary Level LCTES ’22, June 14, 2022, San Diego, CA, USA

for (int row = m() - 1; row >= 0; --row) {
somenumber s = b(row);
for (unsigned int j = cols->rowstart[row];

j < cols->rowstart[row + 1]; ++j) {
s -= val[j] * v(cols->colnums[j]);

}
v(row) += s * om / val[cols->rowstart[row]];

}

(a) Original code with a nested loop.

1 movss (%rdx,%rcx,4), %xmm2
2 movss 0x4(%rdx,%rcx,4),%xmm3
3 cvtss2sd %xmm2, %xmm2
4 movl (%rax,%rcx,4), %esi
5 mulsd (%rbx,%rsi,8), %xmm2
6 movl 0x4(%rax,%rcx,4),%esi
7 cvtss2sd %xmm3, %xmm3
8 mulsd (%rbx,%rsi,8), %xmm3
9 subsd %xmm2, %xmm1
10 subsd %xmm3, %xmm1
11 addq $0x2, %rcx
12 cmpq %rcx, %rbp
13 jne .Ltmp32364

.Ltmp32364:

lo
op

 b
od

y
lo

op
 la

tc
h

(b) The sequence of assembly code with two unrolled iterations in
the loop body.

movss

cvtss2sd movl

mulsd

subsd

movss

cvtss2sd movl

mulsd

subsd

(c) Data dependency graph of instructions in the loop body.

Figure 1. A loop example extracted from 482.sphinx3 in
SPEC2006.

2.2 Reroll to Reduce Code Size
Essentially, loop unrolling attempts to enhance a program’s
execution at the expense of its code volume, which thus may
exacerbate the issue of code size on resource-constrained sys-
tems. From Figure 1(b), we can see that unrolling introduces
five extra instructions (L2, L6-8, L10), i.e., a 62.5% increase (8
instructions to 13). We constantly observe this phenomenon
on standardized benchmarks including SPEC and MiBench,
which are exhibiting code expansion by 3.2% - 36.7%. In
view of this, it is critical to solving the size issue stemming
from unrolling. Apparently, if we revert the unrolling (i.e.,
rerolling), then the code size can be effectively decreased.
For the example in Figure 1, rerolling achieves a reduction
of 38.5% (i.e., 13 instructions to 8). One straightforward im-
plementation is to regenerate the code by compiling with
size-targeted options like -Os to avoid or curtail unrolling,
which is nonetheless impractical in many scenarios where
only binary formats are being accessible.

To the contrary, binary-level rerolling requires no source
code or IR, thus significantly extending the applicability. In

principle, the workflow of rerolling at binary level should
be: 1) recognize loop and its unrolling factor; 2) identify the
iterations; 3) fold the unrolled loop. However, the steps can
be extremely challenging in implementation:

— C1: at binary level, the information stored in instructions
is fragmented and hidden. As illustrated in Figure 1(b),
the expanded loop is dissimilar to the source code or IR,
which possesses high-level semantics like loop modules
or represents in static single assignment (SSA) format.
Accordingly, binary-level rerolling is obliged to system-
atically process the raw instructions to retrieve critical
clues, e.g., inductions and unrolling factors.

— C2: instruction patterns are insufficient to identify the
iterations. In unrolling, multiple iterations are presented
with instructions being mixed up, which thus disrupts
the usual instruction-based analysis. Furthermore, the
expanded instructions are commonly rescheduled as a
routine follow-up of unrolling. For instance, Figure 1(b)
shows the interleaved and reordered instructions from
two iterations. Therefore, instead of relying on instruc-
tions, binary unrolling necessitates more fine-grained in-
vestigations, which can be based on register usages and
address sequence.

— C3: even with fine-grained analysis, iteration identifica-
tion can be burdensome, considering the across-iteration
data dependency. As depicted by Figure 1(c), the two itera-
tions are correlated, hindering the automatic procedure of
iteration restoring. Apparently, a method should be pro-
posed to break up the correlation to progress restoring.

Although with the above challenges, binary-level rerolling
attracted attentions recently to identify and restore the iter-
ations. SubDDG [18] and SuffixTree [35] are such represen-
tative designs, which address the challenge C1. Particularly,
SubDDG resorts to iteration-level data dependency graph to
check whether a loop can be rerolled, and SuffixTree iden-
tifies each iteration by finding consecutively repeated se-
quences of instructions. Clearly, the two designs are ineffec-
tive to handle challenges C2 and C3, thus missing plenty of
rerolling opportunities. Figure 2 reports the rerolling results
of both the illustrated snippet in Figure 1 and the whole
program of 482.sphinx3. It indicates that these challenges
limit the effect of existing binary-level rerolling techniques.

0 2 4

of instructions

Desired

SubDDG

SuffixTree

5

0

0

0 5

Reduce Size (/KB)

7

5

3

Figure 2. The reduction in instruction count and code size
for the motivating example and 482.sphinx3 using existing
techniques and the comparison to desire.

LCTES ’22, June 14, 2022, San Diego, CA, USA Tianao Ge, Zewei Mo, Kan Wu, Xianwei Zhang, and Yutong Lu

z

input
binary

shrunk
binary

Loop-locator Iter-prober Inst-assigner Code-transformer

unroll
info seeds

iteration
identifier✘

Figure 3. Overview of RollBin.

3 Binary-level Loop Rerolling
In this section, we present RollBin, a novel code reduction
technique that works at binary level to effectively capture
and fold up unrolled loops. To achieve this, RollBin scruti-
nizes the binary program to locate the loop snippet, analyzes
the registers and addresses to unveil the iterations, and even-
tually rolls back the loops to compact code.Whereas focusing
on code size, RollBin extends the design to support profiling
guidance and binary layout rearrangement, which respec-
tively helps preserve desired performance and shrink the
final executable.

3.1 Overview
RollBin takes binary files as input, and produces a new
executable with reduced code size after conducting loop-
based optimizations. Around the loop identification and
transformation, the whole procedure can be divided into
four phases, each of which corresponds to one modular com-
ponent of RollBin . As illustrated in Figure 3, RollBin ful-
fills the desired reduction by going through multiple stages:
Loop-locator to identify the loops, Iter-prober to anchor
the iterations, Inst-assigner to assign each instruction to
its iteration, and Code-transformer to revise the code.
As the forefront phase, Loop-locator aims to recognize

the unrolled loops via the induction register, which marks
one potential loop as introduced in Section 2.1, together with
its associated memory operands, and further obtains the crit-
ical unrolling factor to decide the iteration times. With the
induction and factor being carried onward, Iter-prober
examines the instructions to filter out those depending on
the induction. The selected instructions, termed as seeds, are
essentially signaling the origins of iterations in the unrolled
loops. Thus they are forwarded to next phase Inst-assigner
to pinpoint and cluster the instruction sequence of each iter-
ation. The locating is realized by investigating data depen-
dency propagating through seed instructions. After cluster-
ing, the final stage Code-transformer comes into play to
fold up the iterations to counteract the native unrolling.

3.2 Identify Unrolled Loops
In this phase, the Loop-locator component of RollBin in-
tends to prepare for investigating the loops in the upcoming
stages, and thus emphasizes on delimitating the loop re-
gions and conjecturing the vital attributes. Whereas being

pre

exit backedge

movss (%rdx,%rcx,4), %xmm2
movss 0x4(%rdx,%rcx,4),%xmm3
cvtss2sd %xmm2, %xmm2
movl (%rax,%rcx,4), %esi
mulsd (%rbx,%rsi,8), %xmm2
movl 0x4(%rax,%rcx,4),%esi
cvtss2sd %xmm3, %xmm3
mulsd (%rbx,%rsi,8), %xmm3
subsd %xmm2, %xmm1
subsd %xmm3, %xmm1
addq $0x2, %rcx
cmpq %rcx, %rbp
jne .Ltmp32364

.Ltmp32364:

Figure 4. The sequence of assembly code of the motivating
example. The instructions belong to different loop iteration
are highlight in different colors.

(%rdx,%rcx,4) 0x4(%rdx,%rcx,4)

0x4

(%rax,%rcx,4) 0x4(%rax,%rcx,4)

0x4

Figure 5. Twomonotonically increasing sequences extracted
from the motivating example. They are based on the same
induction rcx and grow by 0x4.

characterized by repeated sequences, unrolled loops distin-
guish from usual replicated lines on the regular memory
patterns and final wrapping-up instructions, which are thus
exploited for loop identification. Therefore, RollBin iden-
tifies unrolled loops by detecting regular memory address
sequences to eliminate interference from instruction order.

In detail, RollBin first detects the jump or branch instruc-
tions to locate the loops, and then selects the inductions,
which are carried out along the loop execution. Specifically,
RollBin focuses on the inner-most loops within a single
basic block because compilers tend to unroll small loops
with simple control flow. Next, the inductions1 are utilized
to backtrack the associated memory addressing within the
loop. Those addresses form a regular sequence, and mean-
while the associated instructions are only differing on the
1It should be noted that whereas multiple inductions may exist in one single
loop, any one is sufficient for the backtracking.

RollBin: Reducing Code-Size via Loop Rerolling at Binary Level LCTES ’22, June 14, 2022, San Diego, CA, USA

.Ltmp1 .Ltmp1
movl $0x0, (%rdx) movl $0x0, (%rdx)
movl $0x0, 0x4(%rdx) movl $0x0, 0x4(%rdx)
addq $0x20, %rdx movl $0x0, 0x8(%rdx)
movl $0x0, -0x18(%rdx) movl $0x0, 0xc(%rdx)
movl $0x0, -0x14(%rdx) movl $0x0, 0x10(%rdx)
movl $0x0, -0x10(%rdx) movl $0x0, 0x14(%rdx)
movl $0x0, -0xc(%rdx) movl $0x0, 0x18(%rdx)
movl $0x0, -0x8(%rdx) movl $0x0, 0x1c(%rdx)
movl $0x0, -0x4(%rdx) addq $0x20, %rdx
cmpq %rdx, %rcx cmpq %rdx, %rcx
jne. .Ltmp1 jne. .Ltmp1

Figure 6. Example of rearranging shuffled instructions. The
rearrangement moves the instruction operating on the induc-
tion to the leading of the loop latch, yielding a monotonically
increasing sequence.

displacement of the address, but completely identical on op-
code, index register, base register and scaling factor. In the
example from Figure 4, the memory addresses in the first
two instructions movss form a regular sequence with an in-
terval of 4, so do another two instructions movl. Figure 5 lists
the extracted memory accesses based on the induction rcx.
Apparently, the sequence is monotonically increasing with
a fixed interval 0x4, manifesting a clear unrolling pattern.
Whereas being desired, monotonicity is not always there
because of the instruction rescheduling performed in compi-
lations. As a result, an extra step is necessitated to rearrange
the accesses to expose a monotonous sequence. While the
counter-updating instruction can be inserted in the loop
body, thus breaking the monotonous sequence, RollBin re-
locates the instruction to the leading of the loop latch and
then adjusts the memory access offset. To provide a clearer
explanation, Figure 6 shows another example with instruc-
tion rescheduling. The instruction addq, performing integer
addition on the induction rdx, makes the base addresses of
instructions different, preventing them from establishing a
monotonically increasing sequence. RollBin moves the in-
struction addq and modifies correlative memory access to
discover the monotonicity.
In addition to checking unrolled loops, the collected ad-

dresses can be further used to infer the unrolling factor,
which directly indicates the iteration times. For the exam-
ple in Figure 4, there are two addresses in a monotonous
sequence which are 0x4 apart, conveying a two-time un-
rolling. Actually, the address-based factor needs to be aligned
with the increment/decrement interval, which co-exists with
the induction as an immediate (e.g., "0x2" in the instruction
"addq $0x2 %rcx"). Generally, the immediate must be di-
visible by the unroll factor; otherwise, the identified loop is
disregarded as unrolled, terminating the rerolling procedure.

3.3 Anchor the Iterations
Once deciding the probable unroll factor, we next traverse
all memory-accessing instructions related to any induction,

movss (%rdx,%rcx,4), %xmm2 #(0-0)/4=0 iter 0
movss 0x4(%rdx,%rcx,4), %xmm3 #(4-0)/4=1 iter 1

movl (%rax,%rcx,4), %esi #(0-0)/4=0 iter 0
movl 0x4(%rax,%rcx,4), %esi #(4-0)/4=1 iter 1

Figure 7. Example of two groups of seed instructions which
are assigned with a numeric identifier.

which are further analyzed to speculate their correspond-
ing iterations they belong to. The memory addresses are
requested to form a monotonous sequence with a fixed in-
terval and to be the same length as the probable unroll fac-
tor. So the instructions associated with a memory-access
sequence are equivalent across iterations and each one is
assigned to the appropriate iteration. The iteration residence
is denoted using a numeric identifier, which is calculated as
(𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 − 𝑠𝑡𝑎𝑟𝑡)/𝑠𝑡𝑒𝑝 . More specifically, the displace-
ment is the integer added to the memory address while the
𝑠𝑡𝑎𝑟𝑡 and 𝑠𝑡𝑒𝑝 correspond to the first displacement and the
interval in the memory sequence, respectively.

Figure 7 shows howwe anchor the seed instructions in the
motivating example. There are twomonotonically increasing
sequences with a length of two. Two instructions in each
sequence are assigned to iteration 0 and iteration 1, respec-
tively, because the loop is unrolled into two iterations. These
marked instructions, also known as seed instructions, essen-
tially communicate the original information of iterations in
the unrolled loops. The corresponding iterations of other in-
structions which have no memory access are retrieved using
these seeds, as we discuss in the following subsection.

3.4 Cluster the Instructions
With the collected loop attributes, we then strive to recon-
struct the iterations by putting back each instruction to its
native loop instance. The reconstruction is accomplished
using customized data dependency analysis as follow.

movss
movss

cvtss2sd
movl
mulsd
movl

cvtss2sd
mulsd
subsd
subsd ✘

iter 0
iter 1

Figure 8. Data dependency analysis propagates the iteration
number and intercepts bywall instructions. Seed instructions
are represented by solid-line boxes.

Naturally, data dependency is employed to cluster the in-
structions into their native loop iterations. To this end, each
instruction is expected to be assigned an iteration number,

LCTES ’22, June 14, 2022, San Diego, CA, USA Tianao Ge, Zewei Mo, Kan Wu, Xianwei Zhang, and Yutong Lu

Algorithm 1: Cluster all instructions into loop itera-
tions.
Function ClusterInstructions(𝐿𝑜𝑜𝑝𝐼𝑛𝑠𝑡𝑠):

foreach 𝑖𝑛𝑠𝑡 ∈ 𝐿𝑜𝑜𝑝𝐼𝑛𝑠𝑡𝑠 do
if IsSeedInst(𝑖𝑛𝑠𝑡) then

UpdateIteration(𝑖𝑛𝑠𝑡);
else if CheckDependency(𝑖𝑛𝑠𝑡) then

𝑖 ← GetLargerIteration(𝑖𝑛𝑠𝑡);
AssignIteration(𝑖𝑛𝑠𝑡 ,𝑖);
UpdateIteration(𝑖𝑛𝑠𝑡);

Function UpdateIteration(𝑖𝑛𝑠𝑡):
𝑖 ← GetIteration(𝑖𝑛𝑠𝑡);
foreach dependInst ∈ 𝐺𝑒𝑡𝐷𝑒𝑝𝑒𝑛𝑑𝐼𝑛𝑠𝑡𝑠 (𝑖𝑛𝑠𝑡) do

if IsWallInst(dependInst) then
continue;

ℎ ← HasIteration(𝑑𝑒𝑝𝑒𝑛𝑑𝐼𝑛𝑠𝑡);
if not ℎ then

𝑗 ← GetIteration(𝑑𝑒𝑝𝑒𝑛𝑑𝐼𝑛𝑠𝑡)
if ℎ or 𝑖 > 𝑗 then

AssignIteration(𝑑𝑒𝑝𝑒𝑛𝑑𝐼𝑛𝑠𝑡 ,𝑖);
UpdateIteration(𝑑𝑒𝑝𝑒𝑛𝑑𝐼𝑛𝑠𝑡);

which was already attached to the seed instructions of each
iteration. The data dependency graph is constructed based
on the register usage in context. The instructions with reg-
ister reading rely on their definition instruction until the
value in the register is updated. Along the data dependency
graph, the iteration number propagates among instructions
to progress the clustering. Figure 8 presents the data depen-
dencies in the motivating example. The third instruction
cvtss2sd depends on the first instruction movss because
the operands used in cvtss2sd are defined in movss most
recently, which enables the iteration number of movss to
be propagated to the cvtss2sd. However, the clustering in
practices is more complicated, because of the fact that data
dependencies usually span multiple iterations. One represen-
tative scenario is that a variable is shared among iterations,
and this causes results calculated in the preceding iteration
to be used in the next round. For instance, the last two subsd
instructions in Figure 8 operate the same register xmm1 to
take a cumulative subtraction. Even though the latter one
depends on the former one, they should not be grouped into
the same iteration.
To tackle the across-iteration dependency, we introduce

special wall instructions, which intercept the undesired num-
ber propagation to break up the dependency. Particularly,
wall instructions are defined as either seeds or those recur-
sively depending on other wall instructions. Algorithm 1
outlines the iteration number propagation strategy taking
advantage of wall instructions. In detail, the process works
by scanning all instructions in the loop and then performs a
bottom-up propagation to cluster instructions. Instructions
are assigned with iteration numbers via their dependencies.

When an instruction reuses the calculation results in previ-
ous iteration, it will depend on different iterations, then the
larger iteration number will be chosen to propagate. Unless
the instruction is a wall instruction, all dependencies will be
checked and updated recursively once it is assigned with an
iteration number.

3.5 Transform the Code
After completing the loop reconstruction, RollBin proceeds
to eradicate all or partial iterations to reroll the loop. How-
ever, before activating the rerolling, RollBin should validate
the reconstructed iterations to ensure they are isomorphic.
Iterations are deemed as isomorphic only if they have iden-
tical structure and each instruction is of the same opcode
and operands with its counterpart. Nonetheless, the isomor-
phic criteria might be exceedingly rigorous, considering that
iterations can be semantically equivalent but structurally dif-
ferent, which is typically caused by compiler-directed code
adjustments. As we focus on solving the dependency issue
when grouping, we adopt simple transforming in our design
by removing additional mov instructions which are redun-
dant. Then we ensure that any two groups are isomorphic
by the following rules: 1) the number of instructions in each
group is the same; 2) the corresponding instructions in each
group have an identical opcode; 3) they contain only jump
instructions or operations on inductions in the loop latch.
Once passing the validation, RollBin advances to reroll

the loops, which involves iteration removal and latch update,
which are pretty straightforward to implement. However,
emphasizing solely on code size inevitably poses a risk of sig-
nificant performance degradation, hindering the wider adop-
tion of RollBin . To overcome the issues, RollBin further
incorporates performance profiling data to guide the loop
rerolls. In principle, rerolling degree should be negatively
proportional to the loop’s criticality on performance, e.g.,
light-or-none rerolling on loops predominating the overall
execution. Specifically, RollBin is extended with a thresh-
old RerollFraction to control loop rerolling with profiling.
Based on the ascending order of execution frequency, the
top RerollFraction of loops won’t be rerolled, while the
other loops with lower executed frequency will be rerolled
completely. Once getting folded, the loop instructions will
be generated into a relocatable file, whose .text section
shrinks in size.

3.6 Implementation
Figure 9 shows the pipeline of our technique. It bases on
the LLVM Compiler Infrastructure [22] and BOLT binary
optimizer [27], which help handle disassembly and modifi-
cation of binary files. The Linux Perf tool is used to measure
the number of executed times for loops. The profiling data
obtained via sampling will be processed and mapped to as-
sembly code. To reduce the size of text section during binary

RollBin: Reducing Code-Size via Loop Rerolling at Binary Level LCTES ’22, June 14, 2022, San Diego, CA, USA

BIN
10101
00101

Disassembly

Binary
rewritingProfile data

analysis

BIN
101
001

RollBin
LLVM & BOLT

Loop-locator

Inst-assigner

Iter-prober

Code-transformer

CFG
construction

PROF

optional

Section
readjustment

Profiler

Figure 9. The processing pipeline of our implementation.
The inputs include the target binary and optional profiled
data. The output is a program with smaller code size.

rewriting, relocation information is required to adjust func-
tion position. Relocation can be remained when linked with
specific options, such as –emit-relocs. For stripped bina-
ries with no text relocation, reconstruction of relocation
information [28] can be applied to enable function position
modification.

Simply replacing the text section tends to leave space bub-
bles, wasting storage. To fix the issue, we extend RollBin to
adjust the layout after rerolling loops for storage reduction
in the final executable. We reimplement the binary rewrit-
ing module in BOLT and try to adjust all section offsets to
a compact structure to discharge these empty spaces. Cor-
responding information such as program header table and
section table is updated to ensure the program can be loaded
in memory and find the binary entry correctly.

4 Evaluation Methodology
4.1 Experimental Setup
Hardware & Software: We conduct experiments on Linux-
based servers featuring AMD EPYC 7742 CPU, which is
of 2.25 GHz (3.4 GHz boost) frequency, private L1/L2 of
94 KB/512 KB, and shared L3/memory of 256MB/256GB. For
the software, OS is CentOS 7.9 (kernel version 3.10.0), sup-
porting Linux’s perf (version 4.15.18), and compiler is Clang/L-
LVM 13.0.0.
Benchmarks: To evaluate RollBin in a variety of sce-

narios, we run experiments on different benchmark suites,
including SPEC2006 [17], SPEC2017 [5], and MiBench [15],
which are themostwidely usedworkloads in general-purpose
and embedded systems. In addition, TSVC [1], a loop-heavy
micro-benchmark, is included for better understanding the
benefits gained by RollBin rerolling. TSVC consists of 151
kernels, each containing a single loop. Moreover, we perform
use-case studies on TensorFlow Lite [40] and BLASFEO [13],
which are two realistic applications of machine learning and
linear algebra, respectively. Table 1 briefly summarizes the
benchmarks.
In terms of binary-code construction, we build the work-

loads using Clang/LLVMwith appropriate optimizations. For
SPEC 2006/2017, MiBench and TSVC, we repeatedly com-
pile by enumerating -Os′ (-Os with loop unrolling being
enabled), -O2 and -O3, which may greatly affect the program

Table 1. Evaluated Applications.

Category Suite Domain

Standard
SPEC2006 General-Purpose
SPEC2017 General-Purpose
MiBench Embedded System

Micro-bench TSVC Vectorization

Real-app TensorFlow Lite Machine Learning
BLASFEO Linear Algebra

footprint. To build TensorFlow Lite and BLASFEO, we in-
stead adopt the officially recommended options to conform
to the real usages.

4.2 Designs and Metrics
Contending designs: To evaluate the effectiveness of our
proposed design, we compare RollBin against the baseline
and prior arts, which cover both binary-level and IR-level
code size reduction techniques. Primarily, we study and com-
pare the following approaches:

— Baseline. Default Clang/LLVM with selected option,
which can be -Os′, -O2 or -O3.

— RollBin. The proposed design, which applies binary-
level rerolling atop of the Baseline by analyzingmem-
ory addresses and data dependencies.

— SubDDG [18]. A binary-level rerolling technique which
operates on independent loops

— SuffixTree [35]. A binary-level rerolling technique
using suffix trees to identify repeated instructions.

— RoLAG [31]. The state-of-the-art rolling approach at
IR-level.

Metrics: As the predominant metric to measure rerolling
effect, code size is denoted by the text segment of the binary
file. To quantify code reduction, we first get the absolute
value in KB, by calculating the difference between Baseline
and the studied design, and then get the percentage as:

Reduction (%) =
𝑆𝑖𝑧𝑒diff

𝑆𝑖𝑧𝑒base

To evaluate performance, we generally use the profiled ex-
ecution time, and then convert into a slowdown ratio. The
execution time is averaged across ten repeated runs. As for
the final executable, we directly consider the raw file size.

5 Results and Analysis
Following the aforementioned methodology, we conduct ex-
periments to study the listed design approaches over the
pertinent workloads. This section presents and analyzes the
collected results to demonstrate RollBin’s effects from mul-
tiple facets, including code size, executable size, and perfor-
mance.

LCTES ’22, June 14, 2022, San Diego, CA, USA Tianao Ge, Zewei Mo, Kan Wu, Xianwei Zhang, and Yutong Lu

0

2

4

6

8

10

R
e
d

u
c
ti

o
n

 (
%

)
40
0.
pe
rl
be
nc
h

40
1.
bz
ip
2

40
3.
gc
c

43
3.
m
ilc

44
5.
go
bm

k
44
7.
de
al
II

45
0.
so
pl
ex

45
6.
hm

m
er

45
8.
sj
en
g

46
2.
lib
qu
an
tu
m

46
4.
h2
64
re
f

47
3.
as
ta
r

48
2.
sp
hi
nx
3

48
3.
xa
la
nc
bm

k
50
8.
na
m
d_
r

51
0.
pa
re
st
_r

51
1.
po
vr
ay
_r

52
6.
bl
en
de
r_
r

54
1.
le
el
a_
r

54
4.
na
b_
r

55
7.
xz
_r

60
5.
m
cf
_s

62
0.
om

ne
tp
p_
s

62
3.
xa
la
nc
bm

k_
s

63
1.
de
ep
sj
en
g_
s

63
8.
im
ag
ic
k_
s

65
7.
xz
_s

m
ea
n

0
.91
.3 1
.7

SuffixTree SubDDG RollBin

Figure 10. Code size reduction on SPEC2006/2017 over -Os′. Only a subset of the workload is shown. Out of 43 benchmarks:
40 shrink in size, 3 remain unchanged. The most significant reduction achieves on 482.sphinx3 (5.4%). The average reduction
on all 43 benchmarks is 1.7%, outperforms the state-of-the-art by 31%.

5.1 Code Size
We evaluate the RollBin design across SPEC2006, SPEC2017,
and Mibench benchmark suites, and compare to the closest
state-of-the-arts SubDDG and SuffixTree, which are like-
wise rolling loops at binary level. The code reduction results
of SPEC and MiBench are respectively reported2 in Figure 10
and Figure 11 .
From Figure 10, we can see that RollBin is effectively

reducing code size of SPEC benchmarks, and performs better
than SubDDG and SuffixTree in most cases. Relative to the
Baseline, RollBin achieves an average reduction of 1.7%,
beating the 1.3% and 0.9% of the two contending designs.
Particularly, RollBin reports the maximal reduction of 5.4%
on 482.sphinx3, which is a loop-heavy benchmark favoring
our rerolling techniques. Note that on certain benchmarks
like 462.libquantum, 631.deepsjeng_s and 541.leela_r, SubDDG
shows very trivial effect, whereas RollBin still reaches con-
siderable reductions. These are the cases that loop-carry-
dependency exists among the majority of loops, such as
accumulation of arrays and calculation across multiple iter-
ations, causing iterations in an unrolled loop can’t be dis-
tinguished by data dependency graph. On the other hand,
RollBin well addresses the issue by introducing the concept
of wall instructions (see Section 3.4). Meanwhile, although
SuffixTree is capable to reroll more loops than SubDDG, it
only benefits loops with repetitive code structure. Since
SuffixTree is seriously restricted by the order of instruc-
tions, the normal instruction flow is disrupted and further
looping opportunities are missed, which can be reflected on
482.sphinx3 and 544.nab_r. Instead, RollBin well tolerates
the instruction shuffling, and hence realizes remarkable re-
ductions on these applications (38.4% and 82.4% better than
SuffixTree on 482.sphinx3 and 544.nab_r).

2Due to the limited space, the figures show a subset of the workloads,
together with a mean of the complete set.

0

2

4

6

8

10

R
e
d

u
c
ti

o
n

 (
%

)

FF
T

gh
os
ts
cr
ip
t

gs
m

is
pe
ll

jp
eg
_d

pg
p

rs
yn
th

st
ri
ng
se
ar
ch

su
sa
n_
s

tiff
2b
w

tiff
2d
ith
er

tiff
2m

ed
ia
n

tiff
2r
gb
a

ty
pe
se
t

m
ea
n

0
.91
.6 2
.2

SuffixTree SubDDG RollBin

Figure 11. Code size reduction on MiBench over -Os′. Only
a subset of the workload is shown. Out of 24 benchmarks: 14
shrink in size, 10 remain unchanged. The most significant
reduction achieves on gsm (7.8%). The average reduction on
all 24 benchmarks is 2.2%, outperforms the state-of-the-art
by 38%.

Similarly, Figure 11 presents the code size results ofMiBench.
Not unexpected, RollBin attains more promising reductions
on those embedded applications, which are extremely stress-
ing on code size. Overall, RollBin smoothly reduces the
code size of most applications and reports an average re-
duction of 2.2% (up to 7.83%), which are substantially better
than SubDDG and SuffixTree. It is noteworthy that for par-
tial applications with very limited amount of instructions,
none of the three evaluated designs comes into operation.
adpcm_c is one such representative example having only two
.c files with less than 500 instructions. We further repeat our
experiments over different optimization levels: -O2 and -O3,
and summarize the code size reduction in Table 2. Compared
with -Os′, the complex transformations in higher optimiza-
tion levels lead to the dramatic expansion of binary andmake
it harder to reroll, which results in a lower reduction by loop
rerolling. However, it indicates that RollBin outperforms the
other two approaches at these optimization levels.

RollBin: Reducing Code-Size via Loop Rerolling at Binary Level LCTES ’22, June 14, 2022, San Diego, CA, USA

Table 2. The average code size reduction for SPEC2006/2017
and MiBench over different optimization levels.

Suit Flag SubDDG SuffixTree RollBin

SPEC2006/2017 -O2 0.40% 0.77% 0.93%
-O3 0.39% 0.74% 0.89%

MiBench -O2 0.28% 0.35% 0.50%
-O3 0.28% 0.33% 0.50%

To better understand RollBin’s efficacy, we further collect
the fundamental statistics of loop rerolling, which are #Lps
and Size as listed in Table 3. #Lps and Size respectively
denote the amount of the successfully rerolled loops and the
absolute size of code reduction. From the table, we see that
RollBin rerolls more loops than the peer designs, therefore
bringing in a more significant size reduction. For example,
510.paresr_r achieves #Lps of 1389 and Size of 205 KB, which
are twice the quotas of SuffixTree and SubDDG. Overall,
RollBin is also effective on absolute reductions and respec-
tively reduces total code size by 173KB, 428KB and 65 KB
across SPEC2006/2017 and MiBench.

Table 3. Detailed statistics of loop rerolling on
SPEC2006/2017 and MiBench. #Lps is the amount of
the successfully rerolled loops, and Size represents the
absolute size of code reduction in KB.

Suite Benchmark SubDDG SuffixTree RollBin
#Lps Size #Lps Size #Lps Size

SP
EC

20
06

400.perlbench 41 4 48 5 51 5
401.bzip2 8 0 11 1 13 1
403.gcc 56 4 66 7 76 8
447.dealII 383 38 454 48 544 60
· · · · · ·
450.soplex 49 9 53 9 67 11
456.hmmer 49 4 68 5 80 7
464.h264ref 100 9 131 15 166 21
483.xalancbmk 255 17 261 18 262 19
sum (total) 1111 100 1332 137 1551 173

SP
EC

20
17

508.namd_r 420 27 429 28 435 29
510.parest_r 967 123 934 105 1389 205
511.povray_r 79 7 81 6 105 11
526.blender_r 590 53 690 75 811 92
· · · · · ·
620.omnetpp_s 17 1 20 1 26 1
623.xalancbmk_s 215 15 223 17 239 18
638.imagick_s 56 7 78 14 99 18
657.xz_s 13 1 12 1 14 1
sum (total) 2758 264 2920 289 3654 428

M
iB
en

ch

bitcount 0 0 0 0 0 0
ghostscript 59 7 76 11 108 17
gsm 1 0 2 0 6 2
jpeg_d 29 4 39 6 47 7
· · · · · ·
pgp 27 2 30 3 32 3
tiff2bw 31 3 46 6 55 6
tiff2dither 28 2 43 5 52 6
typeset 16 0 18 3 25 3
sum (total) 287 26 403 51 508 65

Kernels

0.0

20.0

40.0

60.0

80.0

100.0

R
e
d

u
c
ti

o
n

 (
%

)

54.3

23.5

21.3

Ideal RoLAG RollBin mean(Ideal) mean(RoLAG) mean(RollBin)

Figure 12. Code size reduction achieved by RoLAG and
RollBin and a comparison with ideal case across TSVC ker-
nels, sorted by RollBin and RoLAG’s reduction numbers.

5.2 Compare to IR-level Rerolling
Alternatively, loop rerolling can be performed at IR-level,
albeit greatly limiting the scope to specific situations with
source codes available. To reinforce the evaluation, we next
compare RollBin against RoLAG, which is the most recent
IR-based rolling approach. To be consistent on evaluation,
we use the same TSVC micro-benchmark to assess the ap-
proaches. To align with RoLAG, the inner loops are forced to
be unrolled by 8 and compiled with -Os.
Figure 12 shows the reduction on all TSVC kernels ob-

tained by each technique and the gap from ideal situations
where loops are completely rerolled. On average, RollBin
and RoLAG achieved similar reductions while RoLAG out-
performs RollBin by a small margin about 2 percentage
point (21.3% for RollBin and 23.5% for RoLAG). Even without
source code level information, RollBin still performs well
on loop rerolling. For the kernels rerolled by both, RollBin
attains better results than RoLAG. This is because RollBin
rerolls loops completely, while RoLAG partially rerolls loops
and creates a new inner loop which takes up extra space.

Besides evaluating the effectiveness, these results also in-
dicate the limitations of both RollBin and RoLAG. The most
prominent of failure are the loops with multiple basic blocks,
which both RollBin and RoLAG fail to handle. Inter-iteration
loop optimizations, such as tiling and vectorization, can also
disrupt the pattern between iterations, thus making it diffi-
cult to extract the original loop-body from the binary. The
remaining cases are caused by the isomorphic of iterations.
Optimizing certain iterations breaks the isomorphic, and
RollBin identifies them as non-unrolled loops. Such cases
can be covered by adding more code-transforms to RollBin,
e.g., semantically identical instructions replacing.

5.3 Case Study: Real Applications
In addition to the classical benchmark suites, we extend the
evaluation by incorporating two real applications, Tensor-
Flow Lite and BLASFEO, which are widely used in embed-
ded and edge devices. TensorFlow Lite is a lightweight deep

LCTES ’22, June 14, 2022, San Diego, CA, USA Tianao Ge, Zewei Mo, Kan Wu, Xianwei Zhang, and Yutong Lu

learning framework for mobile devices. Containing a rich
of machine learning layers like convolution and pooling,
TensorFlow Lite is predominated by loop calculations. In
particular, we select a C++ pre-built native binary provided
by the official which is used to benchmark a TFLite model
and its individual operators. Evaluation is performed on the
linux x86-64 version binary with default flags (i.e., -O2) [39],
and the results show that RollBin deflates the code by 81 KB
or by 1.9% over 2024 unrolled loops.
The other application, BLASFEO, is a library of BLAS-

and LAPACK-like routines optimized for embedded infras-
tructures. At its core, BLASFEO employs plenty of hand-
crafted assembly-coded dense linear algebra kernels which
are challenging for end users to perform further revisions.
Directly fed into the assembly, RollBin can continue opti-
mizing to shrink code size. To faithfully model the real usage,
we build the library with the default option (i.e., -O2 -mavx2
-mfma) [12]. With the rerolling technique of RollBin , BLAS-
FEO successfully folds up 669 loops out of 3430, compacting
code size by 24KB (i.e., a 1.6% reduction). It demonstrates
that RollBin can be applied to shrink real applications.

5.4 Executable Size
Despite highlighting instruction code, RollBin is expected
to influence the eventual executable, and additionally en-
ables to adjust the post-rerolling sections of the application.
For evaluation, we measure the final executable file size
among the benchmark suites, and list the overall results in
Table 4. Whereas possibly compromised by the OS-layer rou-
tines (e.g., 4K alignment for segment loading), RollBin still
shows an observable file-size reduction. It results in average
reductions of 0.9% (total 647 KB) on SPEC2006/2017 and 1.1%
(total 72 KB) on MiBench. For the remaining benchmarks
who contain one binary file, the largest reduction is around
84 KB, achieved on TSVC.

Table 4. Binary size reduction achieved by RollBin on all
evaluated applications. Abbreviations used:MEAN andMAX,
mean and maximum file size reduction; PMEAN and PMAX,
mean and maximum percentage file size reduction; SUM,
total file size reduction.

MEAN PMEAN MAX PMAX SUM
SPEC2006/2017 17 KB 0.9% 218 KB 3.3% 647 KB

MiBench 3 KB 1.1% 18 KB 4.2% 72 KB
TSVC 13 KB 10.0% N/A N/A N/A

TensorFlow Lite 84 KB 1.5% N/A N/A N/A
BLASFEO 25 KB 1.4% N/A N/A N/A

5.5 Performance
Even though endeavoring to condense program code, loop
rerolling may adversely affect performance. Consequently,
we further gauge RollBin’s intertwining effects on code size

and execution performance, by tuning the profiling-based
knob to configure the trade-offs. We adjust the loop fold-
ing degree, denoted by RerollFraction threshold to direct
RollBin to only operate on the non-performance-critical
loops, equaling to protect the critical ones. Figure 13 con-
veys that performance-unaware strategy (i.e., set threshold
to 1) downgrades performance by 15% on TSVC. With the
help of profiling guidance, RollBin succeeds to lower the
slowdown to a very moderate level (∼1%) when threshold is
set to 0.8, meanwhile maintaining comparable size reduction
of 12%. On 456.hmmer (SPEC2006) and TensorFlow Lite, due
to most rerolled loops with a single block not being hotspots,
varying thresholds have little impact on performance. Ap-
parently, trade-off optimizations can be explored to exert
RollBin’s full potential, but this is beyond the focus of this
paper and thus left for future work.

1 0.95 0.9 0.8 0.7 0.6
0
5

10
15

0
1
2
3

1 0.95 0.9 0.8 0.7 0.6
0

1

2

0
1
2
3

1 0.95 0.9 0.8 0.7 0.6
0

1

2

0
1
2
3

RerollFraction

C
od

e
Si

ze
 R

ed
uc

tio
n

(%
)

Perform
ance Slow

dow
n (%

)

456.hmmer

Tensorflow Lite

TSVC

Figure 13. Code size reduction and performance slowdown
under varying RerollFraction thresholds.

6 Related Work
Code size optimization: Optimizations for code size have
been a basic part since the birth of the compiler, but with-
out much attention. Previous approaches reduce code size
by removing the redundant or dead codes segment, such
as common subexpression elimination [3, 24] and deleting
unnecessary code [4, 21]. Function merge [23, 32, 33, 43] is
used to identify and merge similar subsequences in differ-
ent functions. F3M [36] is the state-of-art function merge
technique which uses a hash-based fingerprint to summarize
functions. Function inlining [9, 19] and loop unrolling [10]
improve performance at the expenses of increasing code size,
which are essential in code size optimizations. Theodoridis et
al. [41] introduced a novel inlining search space formulation
which allows massive space reductions to exhaustively find
the optimal inlining decisions. RoLAG [31] creates loops out
of straight-line code based on a bottom-up graph alignment
solution. These code size optimizations all work on IR and

RollBin: Reducing Code-Size via Loop Rerolling at Binary Level LCTES ’22, June 14, 2022, San Diego, CA, USA

necessitate the compilation of source code. For the programs
written in assembly, pre-built binaries and library files, they
suffer from the lack of source information and are unable
to be optimized. RollBin performs at binary level and is
orthogonal to these works.

Binary optimization: In recent years, binary optimizers
have become popular, such as Propeller [37], Janus [46] and
Halo [11]. These tools use dynamic runtime information to
reduce the overhead on cache and branch prediction by ad-
justing the code layout in the file. Bolt [27] is an open-source
post-link optimizer built on top of the LLVM framework. It
can boost the performance of real-world applications with
both profile-guided optimizations (PGO) and link-time opti-
mizations (LTO). However, these optimizers only focus on
performance without considering code size. RollBin works
on binary level and can also trade-off between performance
and code size. Safe ICF [38] is a binary-level technique focus-
ing on code size which folds identical functions. It saves code
size with a safe option while keeping the run-time perfor-
mance of the optimized binaries. With performance issues
also taken into account, our approach focuses on unrolled
loops, which are common structures in almost all programs.
SubDDG [18] and SuffixTree [35] are the de-optimizations
of the loop unrolling at binary level, as we discussed in Sec-
tion 2.2. They can only accommodate loops with specific
patterns, while RollBin addresses their limitations and is
more flexible to handle the common cases.

7 Conclusion
While often overlooked, the continuously increasing code
size can be a first-order constraint on almost all computing
platforms. Aiming to alleviate the size issue in a general
fashion, this paper presents a RollBin to reroll loops at bi-
nary level. Through using memory address sequence and
customized data dependency analysis, RollBin is capable to
recognize a greater amount of loops. Experiments on bench-
marks and practical applications show that the design effec-
tively reduces code size, significantly outperforming prior
arts. Moreover, owing to additional considerations on loop
hotness, RollBin enables to trade-off between size reduction
and performance of rerolling.

Acknowledgments
We would like to thank Yue Weng and the anonymous re-
viewers for their helpful suggestions on improving this paper.
This research was supported by the National Key R&D Pro-
gram of China (Grant No.2021YFB0301300), the National
Natural Science Foundation of China-#U1811461, the Ma-
jor Program of Guangdong Basic and Applied Research-
#2019B030302002, the GuangdongNatural Science Foundation-
#2018B030312002, and the Program for Guangdong Introduc-
ing Innovative and Entrepreneurial Teams-#2016ZT06D211.

References
[1] David Callahan, Jack J. Dongarra, and David Levine. 1988. Vectorizing

Compilers: A Test Suite and Results. In Proceedings Supercomputing
’88. IEEE Computer Society, 98–105. https://doi.org/10.1109/SUPERC.
1988.44642

[2] Milind Chabbi, Jin Lin, and Raj Barik. 2021. An Experience with
Code-Size Optimization for Production iOS Mobile Applications. In
Proceedings of the 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE, 363–377. https://doi.org/
10.1109/CGO51591.2021.9370306

[3] John Cocke. 1970. Global Common Subexpression Elimination. In
Proceedings of a Symposium on Compiler Optimization. ACM, 20–24.
https://doi.org/10.1145/800028.808480

[4] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999.
Optimizing for Reduced Code Space using Genetic Algorithms. In
Proceedings of the ACM SIGPLAN 1999 Workshop on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES). ACM, 1–9. https:
//doi.org/10.1145/314403.314414

[5] Standard Performance Evaluation Corporation. 2021. SPEC CPU®
2017. https://www.spec.org/cpu2017/

[6] Joe Curley and Sanjiv Shah. 2022. oneAPI – The Cross-
Architecture, Multi-Vendor Path to Accelerated Computing.
https://www.intel.com/content/www/us/en/developer/articles/
technical/cross-architecture-multi-vendor-path-computing.html

[7] Anderson Faustino da Silva, Bernardo N. B. de Lima, and Fernando
Magno Quintão Pereira. 2021. Exploring the Space of Optimization
Sequences For Code-Size Reduction: Insights and Tools. In Proceedings
of the 30th ACM SIGPLAN International Conference on Compiler Con-
struction (CC). ACM, 47–58. https://doi.org/10.1145/3446804.3446849

[8] Anderson Faustino da Silva, Bruno Conde Kind, José Wesley de
Souza Magalhães, Jerônimo Nunes Rocha, Breno Campos Ferreira
Guimarães, and Fernando Magno Quintão Pereira. 2021. ANG-
HABENCH: A Suite with One Million Compilable C Benchmarks for
Code-Size Reduction. In Proceedings of the 2021 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO). IEEE,
378–390. https://doi.org/10.1109/CGO51591.2021.9370322

[9] Thaís Damásio, Vinícius Pacheco, Fabrício Goes, Fernando Pereira, and
Rodrigo Rocha. 2021. Inlining for Code Size Reduction. In Proceedings
of the 25th Brazilian Symposium on Programming Languages (SBLP).
ACM, 17–24. https://doi.org/10.1145/3475061.3475081

[10] Jack J. Dongarra and A. R. Hinds. 1979. Unrolling Loops in FORTRAN.
Softw. Pract. Exp. 9, 3 (1979), 219–226. https://doi.org/10.1002/spe.
4380090307

[11] Kavon Farvardin. 2019. Halo: Wholly Adaptive LLVM Optimizer.
https://github.com/halo-project/halo/blob/master/docs/proposal.pdf

[12] Gianluca Frison. 2022. BLASFEO - BLAS For Embedded Optimization.
https://github.com/giaf/blasfeo/blob/master/CMakeLists.txt

[13] Gianluca Frison, Dimitris Kouzoupis, Tommaso Sartor, Andrea Zanelli,
and Moritz Diehl. 2018. BLASFEO: Basic Linear Algebra Subroutines
for Embedded Optimization. ACM Trans. Math. Softw. 44, 4 (2018),
42:1–42:30. https://doi.org/10.1145/3210754

[14] Google. 2022. Android Developers – Reduce Your App Size. https:
//developer.android.com/topic/performance/reduce-apk-size

[15] Matthew R. Guthaus, Jeff Ringenberg, Dan Ernst, Todd M. Austin,
Trevor N. Mudge, and Richard B. Brown. 2001. MiBench: A Free,
Commercially Representative Embedded Benchmark Suite. In Pro-
ceedings of the fourth annual IEEE international workshop on work-
load characterization (WWC-4). IEEE Computer Society, USA, 3–14.
https://doi.org/10.1109/WWC.2001.990739

[16] Todd T. Hahn, Eric Stotzer, Dineel Sule, and Mike Asal. 2008. Compi-
lation Strategies for Reducing Code Size on a VLIW Processor with
Variable Length Instructions. In Proceedings of the High Performance
Embedded Architectures and Compilers, Third International Conference
(HiPEAC), Vol. 4917. Springer, 147–160. https://doi.org/10.1007/978-3-

https://doi.org/10.1109/SUPERC.1988.44642
https://doi.org/10.1109/SUPERC.1988.44642
https://doi.org/10.1109/CGO51591.2021.9370306
https://doi.org/10.1109/CGO51591.2021.9370306
https://doi.org/10.1145/800028.808480
https://doi.org/10.1145/314403.314414
https://doi.org/10.1145/314403.314414
https://www.spec.org/cpu2017/
https://www.intel.com/content/www/us/en/developer/articles/technical/cross-architecture-multi-vendor-path-computing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/cross-architecture-multi-vendor-path-computing.html
https://doi.org/10.1145/3446804.3446849
https://doi.org/10.1109/CGO51591.2021.9370322
https://doi.org/10.1145/3475061.3475081
https://doi.org/10.1002/spe.4380090307
https://doi.org/10.1002/spe.4380090307
https://github.com/halo-project/halo/blob/master/docs/proposal.pdf
https://github.com/giaf/blasfeo/blob/master/CMakeLists.txt
https://doi.org/10.1145/3210754
https://developer.android.com/topic/performance/reduce-apk-size
https://developer.android.com/topic/performance/reduce-apk-size
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1007/978-3-540-77560-7_11
https://doi.org/10.1007/978-3-540-77560-7_11

LCTES ’22, June 14, 2022, San Diego, CA, USA Tianao Ge, Zewei Mo, Kan Wu, Xianwei Zhang, and Yutong Lu

540-77560-7_11
[17] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions.

SIGARCH Comput. Archit. News 34, 4 (2006), 1–17. https://doi.org/10.
1145/1186736.1186737

[18] Erh-Wen Hu, Bogong Su, and Jian Wang. 2016. Instruction Level Loop
De-optimization. In Computer and Information Science 2015. Springer
International Publishing, Cham, 221–234.

[19] Wen-mei W. Hwu and Pohua P. Chang. 1989. Inline Function Ex-
pansion for Compiling C Programs. In Proceedings of the ACM SIG-
PLAN’89 Conference on Programming Language Design and Implemen-
tation (PLDI). ACM, 246–257. https://doi.org/10.1145/73141.74840

[20] Apple Inc. 2022. Building a Universal macOS Binary.
https://developer.apple.com/documentation/apple-silicon/building-
a-universal-macos-binary

[21] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. 1994. Partial Dead
Code Elimination. In Proceedings of the ACM SIGPLAN’94 Conference
on Programming Language Design and Implementation (PLDI). ACM,
147–158. https://doi.org/10.1145/178243.178256

[22] Chris Lattner. 2002. LLVM: An Infrastructure for Multi-Stage Optimiza-
tion. Master’s thesis. Computer Science Dept., University of Illinois at
Urbana-Champaign, Urbana, IL. See http://llvm.cs.uiuc.edu..

[23] LLVM. 2020. MergeFunctions pass, how it works. https://llvm.org/
docs/MergeFunctions.html

[24] David Monniaux and Cyril Six. 2021. Simple, Light, Yet Formally Veri-
fied, Global Common Subexpression Elimination and Loop-Invariant
CodeMotion. In Proceedings of the 22nd ACMSIGPLAN/SIGBED Interna-
tional Conference on Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES). ACM, 85–96. https://doi.org/10.1145/3461648.3463850

[25] Kateryna Muts, Arno Luppold, and Heiko Falk. 2019. Compiler-Based
Code Compression for Hard Real-Time Systems. In Proceedings of the
22nd International Workshop on Software and Compilers for Embed-
ded Systems (SCOPES). ACM, 72–81. https://doi.org/10.1145/3323439.
3323976

[26] Niels Groot Obbink, Ivano Malavolta, Gian Luca Scoccia, and Pa-
tricia Lago. 2018. An Extensible Approach for Taming the Chal-
lenges of JavaScript Dead Code Elimination. In Proceedings of the
25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE Computer Society, 391–401. https:
//doi.org/10.1109/SANER.2018.8330226

[27] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019.
BOLT: A Practical Binary Optimizer for Data Centers and Beyond. In
Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE, 2–14. https://doi.org/10.
1109/CGO.2019.8661201

[28] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis.
2014. Dynamic Reconstruction of Relocation Information for Stripped
Binaries. In International Workshop on Recent Advances in Intrusion
Detection, Vol. 8688. Springer, 68–87. https://doi.org/10.1007/978-3-
319-11379-1_4

[29] Daejin Park,Min-Woo Jung, and JeonghunCho. 2017. Area Efficient Re-
mote Code Execution PlatformWith On-Demand Instruction Manager
For Cloud-Connected Code Executable IoTDevices. Simul. Model. Pract.
Theory 77 (2017), 379–389. https://doi.org/10.1016/j.simpat.2016.08.010

[30] Matteo Perotti, Pasquale D Schiavone, Giuseppe Tagliavini, Davide
Rossi, Tariq Kurd, Mark Hill, Liu Yingying, and Luca Benini. 2020.
HW/SW Approaches for RISC-V Code Size Reduction. In Workshop
on Computer Architecture Research with RISC-V (CARRV). 1–7. https:
//doi.org/10.3929/ethz-b-000461404

[31] Rodrigo C. O. Rocha, Pavlos Petoumenos, Björn Franke, Pramod Bha-
totia, and Michael F. P. O’Boyle. 2022. Loop Rolling for Code Size
Reduction. In Proceedings of the 2022 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO). IEEE, 217–229.
https://doi.org/10.1109/CGO53902.2022.9741256

[32] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
KimM. Hazelwood, and Hugh Leather. 2021. HyFM: Function Merging
for Free. In Proceedings of the 22nd ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES). ACM, 110–121. https://doi.org/10.1145/3461648.3463852

[33] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
and Hugh Leather. 2019. Function Merging by Sequence Alignment. In
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO). IEEE, 149–163. https://doi.org/10.1109/CGO.2019.8661174

[34] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
and Hugh Leather. 2020. Effective Function Merging in the SSA Form.
In Proceedings of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI). ACM, 854–
868. https://doi.org/10.1145/3385412.3386030

[35] Greg Stiff and Frank Vahid. 2005. New Decompilation Techniques for
Binary-Level Co-Processor Generation. In Proceedings of the 2005 In-
ternational Conference on Computer-Aided Design (ICCAD). IEEE Com-
puter Society, 547–554. https://doi.org/10.1109/ICCAD.2005.1560127

[36] Sean Stirling, Rocha Rodrigo C. O., Kim M. Hazelwood, Hugh Leather,
Michael F. P. O’Boyle, and Pavlos Petoumenos. 2022. F3M: Fast Focused
Function Merging. In Proceedings of the 2022 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE, 242–253.
https://doi.org/10.1109/CGO53902.2022.9741269

[37] Sriraman Tallam. 2019. Propeller: Profile Guided Optimizing Large
Dcale LLVM-Based Relinker. https://github.com/google/llvm-
propeller/blob/plo-dev/Propeller_RFC.pdf

[38] Sriraman Tallam, Cary Coutant, Ian Lance Taylor, Xinliang David
Li, and Chris Demetriou. 2010. Safe ICF: Pointer Safe and Unwind-
ing Aware Identical Code Folding in Gold. In GCC Developers Sum-
mit. http://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=
view&target=tallam.pdf

[39] TensorFlow. 2021. Build TensorFlow Lite with CMake. https://www.
tensorflow.org/lite/guide/build_cmake

[40] TensorFlow. 2022. ML for Mobile and Edge Devices - TensorFlow Lite.
https://www.tensorflow.org/lite

[41] Theodoros Theodoridis, Tobias Grosser, and Zhendong Su. 2022. Un-
derstanding and Exploiting Optimal Function Inlining. In Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). ACM, 977–
989. https://doi.org/10.1145/3503222.3507744

[42] Tobias J. K. Edler von Koch, Igor Böhm, and Björn Franke. 2010.
Integrated Instruction Selection and Register Allocation For Com-
pact Code Generation Exploiting Freeform Mixing of 16- and 32-bit
Instructions. In Proceedings of the 8th International Symposium on
Code Generation and Optimization (CGO). ACM, 180–189. https:
//doi.org/10.1145/1772954.1772980

[43] Tobias J. K. Edler von Koch, Björn Franke, Pranav Bhandarkar, and
Anshuman Dasgupta. 2014. Exploiting Function Similarity For Code
Size Reduction. In Proceedings of the 2014 SIGPLAN/SIGBED Conference
on Languages, Compilers and Tools for Embedded Systems (LCTES).
ACM, 85–94. https://doi.org/10.1145/2597809.2597811

[44] Andrew Wolfe and Alex Chanin. 1992. Executing Compressed Pro-
grams on an Embedded RISC Architecture. In Proceedings of the 25th
Annual International Symposium on Microarchitecture. ACM / IEEE
Computer Society, 81–91. https://doi.org/10.1109/MICRO.1992.697002

[45] Xianhong Xu, Simon Jones, and Christopher T. Clarke. 2003. AR-
M/THUMB Code Compression for Embedded Systems. In Proceedings
of the 12th IEEE International Conference on Fuzzy Systems. 32–35.
https://doi.org/10.1109/ICM.2003.238300

[46] Ruoyu Zhou and Timothy M. Jones. 2019. Janus: Statically-Driven and
Profile-Guided Automatic Dynamic Binary Parallelisation. In Proceed-
ings of the 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, 15–25. https://doi.org/10.1109/CGO.
2019.8661196

https://doi.org/10.1007/978-3-540-77560-7_11
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/73141.74840
https://developer.apple.com/documentation/apple-silicon/building-a-universal-macos-binary
https://developer.apple.com/documentation/apple-silicon/building-a-universal-macos-binary
https://doi.org/10.1145/178243.178256
https://llvm.org/docs/MergeFunctions.html
https://llvm.org/docs/MergeFunctions.html
https://doi.org/10.1145/3461648.3463850
https://doi.org/10.1145/3323439.3323976
https://doi.org/10.1145/3323439.3323976
https://doi.org/10.1109/SANER.2018.8330226
https://doi.org/10.1109/SANER.2018.8330226
https://doi.org/10.1109/CGO.2019.8661201
https://doi.org/10.1109/CGO.2019.8661201
https://doi.org/10.1007/978-3-319-11379-1_4
https://doi.org/10.1007/978-3-319-11379-1_4
https://doi.org/10.1016/j.simpat.2016.08.010
https://doi.org/10.3929/ethz-b-000461404
https://doi.org/10.3929/ethz-b-000461404
https://doi.org/10.1109/CGO53902.2022.9741256
https://doi.org/10.1145/3461648.3463852
https://doi.org/10.1109/CGO.2019.8661174
https://doi.org/10.1145/3385412.3386030
https://doi.org/10.1109/ICCAD.2005.1560127
https://doi.org/10.1109/CGO53902.2022.9741269
https://github.com/google/llvm-propeller/blob/plo-dev/Propeller_RFC.pdf
https://github.com/google/llvm-propeller/blob/plo-dev/Propeller_RFC.pdf
http://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=view&target=tallam.pdf
http://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=view&target=tallam.pdf
https://www.tensorflow.org/lite/guide/build_cmake
https://www.tensorflow.org/lite/guide/build_cmake
https://www.tensorflow.org/lite
https://doi.org/10.1145/3503222.3507744
https://doi.org/10.1145/1772954.1772980
https://doi.org/10.1145/1772954.1772980
https://doi.org/10.1145/2597809.2597811
https://doi.org/10.1109/MICRO.1992.697002
https://doi.org/10.1109/ICM.2003.238300
https://doi.org/10.1109/CGO.2019.8661196
https://doi.org/10.1109/CGO.2019.8661196

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Loop Unrolling
	2.2 Reroll to Reduce Code Size

	3 Binary-level Loop Rerolling
	3.1 Overview
	3.2 Identify Unrolled Loops
	3.3 Anchor the Iterations
	3.4 Cluster the Instructions
	3.5 Transform the Code
	3.6 Implementation

	4 Evaluation Methodology
	4.1 Experimental Setup
	4.2 Designs and Metrics

	5 Results and Analysis
	5.1 Code Size
	5.2 Compare to IR-level Rerolling
	5.3 Case Study: Real Applications
	5.4 Executable Size
	5.5 Performance

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

