
Interleaved Bitstream Execution for Multi-Pattern Regex
Matching on GPUs

Tianao Ge
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, Guangdong, China
tge601@connect.hkust-gz.edu.cn

Xiaowen Chu
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, Guangdong, China

xwchu@hkust-gz.edu.cn

Hongyuan Liu∗
Stevens Institute of Technology
Hoboken, New Jersey, USA

hliu96@stevens.edu

Abstract
Pattern matching is a key operation in unstructured data analytics,
commonly supported by regular expression (regex) engines. Bit-
parallel regex engines compile regexes into bitstream programs,
which expose fine-grained parallelism and are well-suited for GPU
execution. A straightforward strategy executes each bitstream in-
struction sequentially, processing all data blocks in a loop. However,
this execution suffers from poor data reuse and high memory con-
sumption, limiting throughput. Our key insight is to adopt an inter-
leaved execution model, where all bitstream instructions are fused
into a single loop and executed block-wise. While interleaved exe-
cution could improve data reuse, enabling it on GPUs is non-trivial
due to cross-block data dependencies. To address this, we intro-
duce 1) Dependency-Aware Thread-Data Mapping, which resolves
cross-block dependencies via selective recomputation. We further
improve interleaved execution performance with two additional
optimizations: 2) Shift Rebalancing, which balances dependency
chains to reduce synchronization barriers; and 3) Zero Block Skip-
ping, which exploits bitstream sparsity to skip computation on zero
blocks. Together, these techniques make interleaved execution prac-
tical and efficient. Experiments on real-world regex benchmarks
demonstrate a 19.5× geometric mean speedup over the state-of-the-
art GPU regex engine.

CCS Concepts
• Theory of computation→ Regular languages; • Computing
methodologies→ Parallel computing methodologies; • Software
and its engineering→ Compilers.

Keywords
Regex Matching, Bitstream, GPU, Compiler, Bit Parallelism

ACM Reference Format:
Tianao Ge, Xiaowen Chu, and Hongyuan Liu. 2025. Interleaved Bitstream
Execution for Multi-Pattern Regex Matching on GPUs. In 58th IEEE/ACM
International Symposium on Microarchitecture (MICRO ’25), October 18–22,
2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3725843.3756052

∗Part of this work was done while the author was at HKUST (Guangzhou).

This work is licensed under a Creative Commons Attribution 4.0 International License.
MICRO ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1573-0/25/10
https://doi.org/10.1145/3725843.3756052

1 Introduction
Unstructured data analytics frequently involves pattern match-
ing and token extraction tasks such as identifying fields in log
entries [46], detecting intrusion patterns in network packets [17,
18, 83], filtering and querying textual data [12, 32, 34–36, 44, 49],
genome sequence analysis [11, 21, 23, 58, 65], electronic design au-
tomation [27], and preprocessing massive text corpora for language
model training [20, 63]. Over 80% of all data generated worldwide
is unstructured [42]. Central to these workloads are regular expres-
sion (regex) engines, which efficiently express and match complex
textual patterns. However, traditional regex engines, which rely
on finite automata (e.g., Deterministic Finite Automata, DFAs or
Non-deterministic Finite Automata, NFAs) [5, 39], suffer significant
performance penalties due to irregular memory accesses and con-
trol flows. These issues become even more severe in multi-regex
workloads, where thousands of regexes are matched over a shared
input stream [28, 37, 88, 89].

To mitigate these inefficiencies, bit-parallel approaches have
been proposed. These approaches compile regexes into bitstream
programs, where variables are unbounded (potentially very long)
bitstreams [24, 50]. Matches are encoded as 1 s in specific posi-
tions of these bitstreams. The final match results are computed by
executing a sequence of bitstream instructions, which include op-
erations (e.g., AND, OR, SHIFT), and control flow statements (e.g., if
and while). This model exposes fine-grained parallelism over the
input stream and avoids the one-byte-at-a-time execution model,
making it promising for GPU execution where massive parallelism
is essential to fully utilize the hardware. Yet, despite its promise,
existing bitstream-based engines are primarily designed for CPUs
with SIMD support, and little is known about how to generate
high-performance GPU kernels from such programs.

Figure 1 (a) shows a straightforward way to execute bitstream
programs on GPUs [24]. To process an instruction that operates
on multiple unbounded bitstreams, the bitstreams are divided into
blocks. In each step (𝑡1, 𝑡2, 𝑡3, . . .), a block of the result bitstream is
computed, and the full computation of one bitstream instruction
is completed block by block in a loop. The next instruction in the
bitstream program is not executed until the current one completes.
One critical limitation of this approach is the lack of data reuse:
Each bitstream, even if temporary, must be fully materialized and
stored in memory, leading to high memory traffic and potentially
exceeding GPU memory capacity.

To address this challenge, our key insight is to interleave the
execution of bitstream instructions across blocks, as shown in Fig-
ure 1 (b). Instead of processing each instruction across all blocks
before moving to the next instruction, we fuse the entire bitstream

https://orcid.org/0000-0003-0605-0888
https://orcid.org/0000-0001-9745-4372
https://orcid.org/0000-0002-6961-6394
https://doi.org/10.1145/3725843.3756052
https://doi.org/10.1145/3725843.3756052
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725843.3756052

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianao Ge, Xiaowen Chu, and Hongyuan Liu

10100101101010101010101001011010

01100010111010010001101010111001

00111100000111110001110000111011

10100101101010101010101001011010

01100010111010010001101010111001

00111100000111110001110000111011

Bitstream 1

Bitstream 2

Bitstream 3

(a) Sequential Execution (b) Interleaved Execution

t1 t2 t3 t1

t2

t3

for inst in insts:
for block in bitstreams:

execute inst on block
sync

for block in bitstreams:
for inst in insts:

execute inst on block
sync

…

…

Figure 1: Sequential vs. interleaved execution. Interleaved
execution improves data reuse but is hindered by cross-block
dependencies and synchronization overhead; our techniques
address these challenges to make it practical and efficient.

program into a single loop in a GPU kernel and execute all instruc-
tions on the same input block. Interleaved execution improves data
reuse and reduces memory pressure. However, enabling correct and
efficient interleaved execution is non-trivial. Shift operations create
cross-block dependencies, as they may require results from “past”
(right shifts) or “future” (left shifts) blocks in the bitstream. This
becomes more complex with control flow constructs (e.g., while
loops) that introduce dynamic, input-dependent execution paths.

We propose BitGen, a code generator that enables efficient in-
terleaved execution through three key techniques: 1) To enable in-
terleaved execution, we introduce Dependency-Aware Thread-
Data Mapping, which resolves inter-block data dependencies by
assigning GPU threads to blocks of bitstreams dynamically and se-
lectively recomputing only the bits necessary for the current block.
This enables fine-grained reuse of intermediate bitstreams at the
cost of per-block barriers introduced to satisfy bitstream instruction
dependencies. 2) To alleviate the synchronization overhead intro-
duced by interleaved execution, we propose Shift Rebalancing. It
transforms long dependency chains involving shift operations (e.g.,
SHIFT followed by AND) into a balanced and shallower dataflow
graph. This enables better instruction scheduling and allows inde-
pendent instructions to share synchronization points, reducing the
total number of barriers. 3) Finally, interleaved execution exposes
new optimization opportunities. Many intermediate bitstreams are
sparse, often consisting of mostly zero blocks. Unlike in sequential
execution, where all blocks are processed regardless of content, in-
terleaved execution allows us to exploit this sparsity. We introduce
Zero Block Skipping, which inserts compile-time if conditions
to skip computation for zero blocks, thereby mitigating redundant
computation.

To the best of our knowledge, BitGen is the first work that
compiles entire bitstream programs into a GPU kernel that enables
interleaved execution. We make the following contributions:

● We identify key performance limitations of sequential block-
wise execution on GPUs, including poor data reuse, high mem-
ory consumption, and redundant computation.

● We propose BitGen, a GPU code generator that enables ef-
ficient interleaved execution of bitstream programs through
three key optimizations: Dependency-Aware Thread-Data Map-
ping for resolving cross-block dependencies via selective re-
computation, Shift Rebalancing for reducing synchronization

Listing 1: Simplified Grammar of Regular Expressions
R ::= CC // character class (e.g., a, [a-z])

| RR // concatenation
| R|R // alternation
| R* // kleene star
| R{n,m} // bounded repetition
| R+ // one or more repetitions
| R? // zero or one repetition

barriers through dependency balancing, and Zero Block Skip-
ping for skipping computation on sparse bitstreams.

● We evaluate BitGen on real-world regex workloads, demon-
strating 19.5× and 1.7× geometric mean speedup over state-of-
the-art GPU and CPU regex engines, respectively.

2 Background
This section introduces the basics of regular expressions (regexes),
and demonstrates how regexes are translated to bitstream programs.

Regular Expression. Regular expressions (regex) are a compact
and expressive way to represent patterns. They are widely used in
tasks such as text processing, network intrusion detection, bioinfor-
matics, and parsing. For example, the network intrusion detection
systems use regexes to represent attack signatures and match ma-
licious payload patterns in real-time packet streams [7, 64, 91].
Listing 1 defines a basic grammar for regular expressions.

A character class 𝐶𝐶 matches a single character, such as ‘a’ or
characters represented as ‘[a-z]’. Concatenation (𝑅𝑅) matches
when one pattern is followed directly by another. Alternation (𝑅⋃︀𝑅)
allows either of the two patterns to match. The Kleene star (𝑅∗)
accepts zero or more repetitions of a pattern. Finally, repetition
operators include𝑅{𝑛,𝑚} for bounded repetition, allowing between
𝑛 and𝑚matches;𝑅+ for one ormorematches; and𝑅? for zero or one
match. For example, [a-z0-9]+@[a-z0-9]+\.[a-z]{2,}matches
an email address where both the username and domain consist only
of lowercase letters and digits.

Regular expressions and finite automata are mathematically
equivalent: any pattern described by a regex can be recognized
by a finite automaton, and any language accepted by a finite
automaton can be described by a regex [10, 75]. This equiva-
lence allows regex engines to compile regexes into automata such
as non-deterministic or deterministic finite automata (NFAs or
DFAs), and perform matching by simulating state transitions one
symbol at a time [5, 16, 17, 29, 40, 84]. However, simulating au-
tomata on GPUs introduces challenges due to irregular memory
accesses, control flow divergence, and limited parallelism, which
can significantly hinder performance on massively parallel archi-
tectures [37, 52, 55, 77].

Bitstream Program. To address the inefficiencies of automata
on modern parallel hardware, alternative approaches based on bit-
parallelism have been proposed [24, 50]. The key idea of this ap-
proach is to lower regular expressions into data-parallel bitstream
programs (Listing 2), a sequence of operations over bitstreams
using Boolean logic and control flow. Each statement either assigns
an expression to a variable or implements control flow (e.g., if or

Interleaved Bitstream Execution for Multi-Pattern Regex Matching on GPUs MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Listing 2: Grammar of Bitstream Program
<stmts> ::= <stmt> <stmts> | ε
<stmt> ::= <var> "=" <expr> | "if" "(" <var> "):" <stmts>

| "while" "(" <var> "):" <stmts>
| "for" "(" <const> ")" ":" <stmts>

<expr> ::= <op> <var> | <var> <op> <var>
| <var> <shift> <const>

<op> ::= "∼" | "&" | "|" # NOT, AND, OR
<shift> ::= "≪" | "≫" # LSHIFT, RSHIFT

(a) Character class

(b) Concatenation: 𝑹𝟏𝑹𝟐

(d) Bounded repetition: 𝑹{𝒏,𝒎}

(c) Alternation: 𝑹𝟏|𝑹𝟐

input: S1, S2

output: SR1R2
S1 = S1 � 1

SR1R2 = S1 & S2

input: S1, S2

output: SR1|R2
SR1|R2 = S1 | S2

input: S1

output: SR{n,m}
S2 = S1

for i = 1 to n - 1:

S2 = S2 � 1

S2 = S2 & S1

SR{n,m} = S2

for i = 1 to m - n:

S2 = S2 � 1

S2 = S2 & S1

SR{n,m} = SR{n,m} | S2

(e) Kleene star: 𝑹𝟏(𝑹𝟐) ∗

input: text, CC

output: Scc
b = transpose(text)

Scc = match(b, CC)

input: S1, S2

output: SR1R2*
SR1R2* = S1

while (S1):

S3 = S1 � 1

S4 = S2 & S3

S5 = ⇠SR1R2*
S1 = S4 & S5

SR1R2* = SR1R2* | S4

Figure 2: Rules for lowering regexes to bitstream programs,
omitting R+ and R? as derivable from existing constructs. (b):
Concatenation is applied at the character-class step. Here,
𝑅2 is a single character class. (e): 𝑅1 is used as a prefix to
determine the starting positions in the Kleene star, since 𝑅2∗
alone would mark all positions as matches.

while). In control-flow statements, the condition is a bitstream that
evaluates to true if it contains at least one set bit (i.e., popcount > 0).
Expressions operate over bitstreams and include unary or binary
bitwise operations, as well as shift operations with immediate con-
stants. We refer to a statement applying bitwise, shift, or conditional
operations on bitstreams as a bitstream instruction.

Lowering Regular Expressions to Bitstream Programs. Fig-
ure 2 illustrates the rules for this compilation process. For a regex
𝑅, we define the bitstream SR such that a 1 at position 𝑖 indicates a
successful match ending at that position. For example, if 𝑅 is /cat/
and the input stream is bobcat, then Scat = 000001 . We adopt
all-match semantics [24, 62], in which all possible match endpoints
are preserved during execution (e.g., every position matching a* is
marked). As regexes are structured as compositions of subexpres-
sions, SR could be computed by the bitstreams of 𝑅’s subregexes.

To facilitate bit-parallel processing, the input byte stream is
transposed into 8 bitstreams (𝑏0 to 𝑏7) [24, 50]. Each bitstream 𝑏𝑖

Listing 3: Bitstream program for regex /a(bc)*d/

input: text
output: S12
S1, S2, S3, S4 = match(text_trans, CCs) # a, b, c, d
S10 = S1
while (S1):

S5 = S1 ≫ 1
S6 = S2 & S5
S7 = S6 ≫ 1
S8 = S3 & S7
S9 = ∼S10
S1 = S8 & S9
S10 = S10 | S8 # a(bc)*

S11 = S10 ≫ 1
S12 = S4 & S11 # a(bc)*d

represents the i-th bit of all bytes in the input. This representation al-
lows character-class matches to be computed using parallel bitwise
operations. For example, the bitstream that matches ‘a’ (i.e., ASCII
01100001) is computed as: ¬𝑏0∧𝑏1∧𝑏2∧¬𝑏3∧¬𝑏4∧¬𝑏5∧¬𝑏6∧𝑏7.
Figure 2 (a) illustrates this process, where text_trans corresponds
to bitstreams 𝑏0 to 𝑏7, and CC is the bitmask of the character class
(e.g., 01100001 for ‘a’). The resulting bitstream (SCC) marks all
matching positions with a 1 and all others with a 0 .

To match a concatenation 𝑅1𝑅2, as shown in Figure 2 (b), the
bitstream S1 can be viewed as a set of cursors, where each 1 marks
a position in the input stream where 𝑅1 finishes. Here, R2 is a single
character class. By shifting S1 one position to the right, we advance
these cursors and begin matching 𝑅2 from the next position. For a
general 𝑅1𝑅2, we first decompose 𝑅2 into CC1⋯CC𝐿 and apply this
rule 𝐿 times; e.g., abc ⋅ de is evaluated as (((abc ⋅ d) ⋅ e)) with two
successive one-position shifts. The bitwise AND operation with S2
identifies the positions where both 𝑅1 and 𝑅2 match in sequence,
thereby producing SR1R2. Alternation 𝑅1 ⋃︀ 𝑅2 is handled by taking
the union of the two bitstreams, i.e., SR1|R2 = S1 ⋃︀ S2, as shown
in Figure 2 (c). Figure 2 (d) illustrates the program for computing
bounded repetition of a regex 𝑅. The code uses RSHIFTs and
ANDs to ensure each repetition of 𝑅 follows the previous one. By
chaining these operations, it constructs match streams for SR{n,n},
SR{n+1,n+1}, . . . , SR{m,m}, and combines them using bitwise OR to
produce the final result SR{n,m}. Figure 2 (e) shows how to compute
the Kleene star of 𝑅2, with the starting positions provided by the
matching results of 𝑅1. It iteratively accumulates all positions that
can be reached through repeated applications of 𝑅2. The process is
expressed as a fixed-point loop: It repeatedly shifts the matching
positions forward, finds matches of 𝑅2, and stops when no new
matches are found.

Example: lowering /a(bc)*d/ to a bitstream program. As
shown in Listing 3, the initial match of a produces S1, which serves
as the starting positions for the Kleene star (bc)*. The star body
is decomposed at compile time into two character classes, CC𝑏
and CC𝑐 . At runtime, the fixed-point loop repeatedly applies the
two shifts and AND operations to compute all positions reached
by (bc)*, accumulating results in S10. Finally, S10 is shifted by 1
and ANDed with the match of CC𝑑 to produce S12.

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianao Ge, Xiaowen Chu, and Hongyuan Liu

input: text. output: S9
S1, S2, S3, S4 =

match(text_trans, CCs)
S5 = S1 ≫ 1
S6 = S5 & S2 # ab
S8 = 0
if (S6):

S7 = S6 ≫ 1
S8 = S7 & S3 # abc

S9 = S8 | S4 # abc|d

(a) Bitstream program for regex
/(abc)|d/.

ecbadcbaText
...1...1S1
..1...1.S2
.1...1..S3
....1...S4
..1...1.S5
..1...1.S6
.1...1..S7
.1...1..S8
.1..11..S9

(b) Bitstream program execution
illustrated step by step. Zeros are
shown as dots.

Figure 3: Example of bitstream program and its bitstream. S1
to S4 are bitstreams for character classes a, b, c, and d. The
transpose of the input text and the computation of these
character classes are omitted in this figure.

Runtime example of /(abc)|d/. Figure 3 presents a step-by-
step example of matching the regex /(abc)|d/ against the input
stream abcdabce. For improved readability, zeros are displayed as
dots. The matching positions are marked with 1 in S9. Although
the code generation rules in Figure 2 do not generate if clauses,
adding them can be beneficial: in Figure 3, when S6 is all 0 , both
S7 and S8 will also be 0 , allowing us to skip several operations.
We will discuss this in detail in Section 6.

3 BitGen: Generating Efficient GPU Kernels for
Bitstream Programs

3.1 Overview of BitGen
We propose BitGen, a GPU kernel code generator for bitstream pro-
grams. Figure 4 illustrates the compilation and execution workflow
of BitGen. This work targets the problem of multi-regex matching,
where a set of regular expressions are evaluated concurrently over
a shared input stream–a critical need in high-throughput domains
such as deep packet inspection and log analytics [7, 64, 83, 91]. We
use Parabix [50] to compile regexes into bitstream programs. Unlike
Parabix, which lowers these programs into CPU SIMD instructions,
BitGen emits optimized GPU kernels for execution.

Analogous to several domain-specific pattern matching accel-
erators [31, 68, 73], the generated kernel follows an MISD-style
execution model at runtime for the bitstream programs: each GPU
Cooperative Thread Array (CTA) executes a sequence of instruc-
tions of a regex-derived bitstream program while consuming a
shared input stream. When multiple input streams are processed
concurrently, the model transitions to MIMD-style execution.

To leverage regex-level parallelism on GPUs, BitGen partitions
the regexes into groups and generates a bitstream program for
each group. Each bitstream program is then assigned as a device
function to a CTA. We describe the regex grouping strategy in
Section 7. Within a CTA, threads execute the bitstream instructions
in a data-parallel manner. To process long bitstreams, computation
is divided into multiple iterations. Each bitstream (𝑆) is partitioned
into blocks (𝐵), and each loop iteration processes one block (i.e.,
Block-wise Execution). Threads collectively load the block’s data

Inst Seq
1

inst
Regex 1
0110…0100

inst inst
Regex 2

…

Regex 3 Regex 4
0110…0100 0110…0100 0110…0100

inst
sync
inst
sync
inst
sync
inst

…

sync
inst
sync
inst
sync
inst

…

sync
inst
sync
inst
sync
inst

…

sync
inst
sync
inst
sync
inst

CTA 1

Inst Seq
2

Inst Seq
3

Inst Seq
4

CTA 2 CTA 3 CTA 4

Bitstream
Program

Bitstream
Kernel

Regex
Patterns

Input
TextbitGen

Transpose

Figure 4: BitGen workflow: Bitstream programs are com-
piled into a GPU kernel, with each CTA processing one or
more regexes.

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianao Ge, Xiaowen Chu, and Hongyuan Liu

input: text. output: S9
S1, S2, S3, S4 =

match(text_trans, CCs)
S5 = S1 ≫ 1
S6 = S5 & S2 # ab
S8 = 0
if (S6):

S7 = S6 ≫ 1
S8 = S7 & S3 # abc

S9 = S8 | S4 # abc|d

(a) Bitstream program for regex
/(abc)|d/.

ecbadcbaText
...1...1S1
..1...1.S2
.1...1..S3
....1...S4
..1...1.S5
..1...1.S6
.1...1..S7
.1...1..S8
.1..11..S9

(b) Bitstream program execution
illustrated step by step. Zeros are
shown as dots.

Figure 3: Example of bitstream program and its bitstream. S1
to S4 are bitstreams for character classes a, b, c, and d. The
transpose of the input text and the computation of these
character classes are omitted in this figure.

Runtime example of /(abc)|d/. Figure 3 presents a step-by-
step example of matching the regex /(abc)|d/ against the input
stream abcdabce. For improved readability, zeros are displayed as
dots. The matching positions are marked with 1 in S9. Although
the code generation rules in Figure 2 do not generate if clauses,
adding them can be beneficial: in Figure 3, when S6 is all 0 , both
S7 and S8 will also be 0 , allowing us to skip several operations.
We will discuss this in detail in Section 6.

3 BitGen: Generating Efficient GPU Kernels for
Bitstream Programs

3.1 Overview of BitGen
We propose BitGen, a GPU kernel code generator for bitstream pro-
grams. Figure 4 illustrates the compilation and execution workflow
of BitGen. This work targets the problem of multi-regex matching,
where a set of regular expressions are evaluated concurrently over
a shared input stream–a critical need in high-throughput domains
such as deep packet inspection and log analytics [7, 64, 83, 91]. We
use Parabix [50] to compile regexes into bitstream programs. Unlike
Parabix, which lowers these programs into CPU SIMD instructions,
BitGen emits optimized GPU kernels for execution.

Analogous to several domain-specific pattern matching accel-
erators [31, 68, 73], the generated kernel follows an MISD-style
execution model at runtime for the bitstream programs: each GPU
Cooperative Thread Array (CTA) executes a sequence of instruc-
tions of a regex-derived bitstream program while consuming a
shared input stream. When multiple input streams are processed
concurrently, the model transitions to MIMD-style execution.

To leverage regex-level parallelism on GPUs, BitGen partitions
the regexes into groups and generates a bitstream program for
each group. Each bitstream program is then assigned as a device
function to a CTA. We describe the regex grouping strategy in
Section 7. Within a CTA, threads execute the bitstream instructions
in a data-parallel manner. To process long bitstreams, computation
is divided into multiple iterations. Each bitstream (𝑆) is partitioned
into blocks (𝐵), and each loop iteration processes one block (i.e.,
Block-wise Execution). Threads collectively load the block’s data

Inst Seq
1

inst
Regex 1
0110…0100

inst inst
Regex 2

…

Regex 3 Regex 4
0110…0100 0110…0100 0110…0100

inst
sync
inst
sync
inst
sync
inst

…

sync
inst
sync
inst
sync
inst

…

sync
inst
sync
inst
sync
inst

…

sync
inst
sync
inst
sync
inst

CTA 1

Inst Seq
2

Inst Seq
3

Inst Seq
4

CTA 2 CTA 3 CTA 4

Bitstream
Program

Bitstream
Kernel

Regex
Patterns

Input
TextbitGen

Transpose

Figure 4: BitGen workflow: Bitstream programs are com-
piled into a GPU kernel, with each CTA processing one or
more regexes.

S3 = S1 & S2
S4 = S3 ≫ 1

(a) Bitstream Program.

for Bi in S:
B3i = B1i & B2i

for Bi-1,Bi in S:
B4i = [B3i-1, B3i] ≫ 1

(b) Block-wise Sequen-
tial Execution in CTAs.

𝑩𝟒

𝑩𝟏

𝑩𝟐
&

≫ 1
𝑩𝟑

𝑩𝟑

Iter 1
T1 T2 T3 T4

.11..1.11.1.1.1.

Iter 2
T1 T2 T3 T4

T1 T2 T3 T4 T1 T2 T3 T4

sync

1..1.1.11.1.1.1.

.....1.11.1.1.1.

.....1.11.1.1.1.

....1.11.1.1.1..
sync

Iter 1 Iter 2

(c) Thread Data Mapping.𝑇 = 4,𝑊 = 2.

Figure 5: Example of the sequential execution of a bitstream
program. In (b), we denote S as the bitstream and B𝑖 as the
block from the bitstream processed in the 𝑖-th iteration. The
notation (︀B𝑖−1, B𝑖⌋︀ ≫ 1 represents concatenating two consecu-
tive blocks, right shifting, and extracting the higher bits as
the new block. Block writes to global memory and synchro-
nizations are omitted in (b).

from global memory into registers and compute in parallel. Each
thread handles a unit (𝑈) of data per iteration, where the unit size
(𝑊) is determined by the GPU word size (typically 32 bits). The
number of blocks is computed as 𝑁 = [︂⋃︀𝑆 ⋃︀⇑(𝑇 ⋅𝑊)⌉︂, where ⋃︀𝑆 ⋃︀ is
the number of bits in 𝑆 , and 𝑇 is the number of threads per CTA.
For clarity, we represent the bitstream as 𝑆 = {𝐵0, 𝐵1, . . . , 𝐵𝑁−1}.
3.2 Sequential Block-wise Execution
Figure 5 presents an illustrative example of the sequential exe-
cution of a bitstream program. The bitstream program shown in
Figure 5 (a) is compiled into a device function consisting of two
loops (Figure 5 (b)). Each loop (represented as a dashed blue box,
a convention used in later figures) corresponds to a bitstream in-
struction and iterates over the blocks of the operand bitstreams.
For the first bitstream instruction, which performs a bitwise AND,
each thread processes its assigned units independently from 𝐵1𝑖

(a) Bitstream Program.

for Bi in S:
B3i = B1i & B2i

for Bi-1,Bi in S:
B4i = [B3i-1, B3i] ≫ 1

(b) Block-wise Sequen-
tial Execution in CTAs.

𝑩𝟒

𝑩𝟏

𝑩𝟐
&

≫ 1
𝑩𝟑

𝑩𝟑

Iter 1
T1 T2 T3 T4

.11..1.11.1.1.1.

Iter 2
T1 T2 T3 T4

T1 T2 T3 T4 T1 T2 T3 T4

sync

1..1.1.11.1.1.1.

.....1.11.1.1.1.

.....1.11.1.1.1.

....1.11.1.1.1..
sync

Iter 1 Iter 2

(c) Thread Data Mapping.𝑇 = 4,𝑊 = 2.
Figure 5: Example of the sequential execution of a bitstream
program. In (b), we denote S as the bitstream and B𝑖 as the
block from the bitstream processed in the 𝑖-th iteration. The
notation (︀B𝑖−1, B𝑖⌋︀ ≫ 1 represents concatenating two consecu-
tive blocks, right shifting, and extracting the higher bits as
the new block. Block writes to global memory and synchro-
nizations are omitted in (b).

from global memory into registers and compute in parallel. Each
thread handles a unit (𝑈) of data per iteration, where the unit size
(𝑊) is determined by the GPU word size (typically 32 bits). The
number of blocks is computed as 𝑁 = [︂⋃︀𝑆 ⋃︀⇑(𝑇 ⋅𝑊)⌉︂, where ⋃︀𝑆 ⋃︀ is
the number of bits in 𝑆 , and 𝑇 is the number of threads per CTA.
For clarity, we represent the bitstream as 𝑆 = {𝐵0, 𝐵1, . . . , 𝐵𝑁−1}.
3.2 Sequential Block-wise Execution
Figure 5 presents an illustrative example of the sequential exe-
cution of a bitstream program. The bitstream program shown in
Figure 5 (a) is compiled into a device function consisting of two
loops (Figure 5 (b)). Each loop (represented as a dashed blue box,
a convention used in later figures) corresponds to a bitstream in-
struction and iterates over the blocks of the operand bitstreams.
For the first bitstream instruction, which performs a bitwise AND,
each thread processes its assigned units independently from 𝐵1𝑖
and 𝐵2𝑖 . In contrast, the second instruction performs a right-shift

Interleaved Bitstream Execution for Multi-Pattern Regex Matching on GPUs MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

operation across block boundaries. To correctly shift bits across
blocks, the loop must load two adjacent blocks (𝐵3𝑖 and 𝐵3𝑖−1),
enabling threads to access bits from the previous block when com-
puting the current one. Figure 5 (c) illustrates the thread-to-data
mapping for this process, assuming 𝑇 = 4 and𝑊 = 2. Due to in-
struction dependencies, an intra-CTA barrier is inserted between
loops. However, sequential block-wise execution presents several
performance challenges:

a) Poor Data Reuse. In sequential block-wise execution, each
instruction executes in a dedicated loop, causing frequent load-
ing and storing of intermediate bitstreams. This loop separation
severely limits data reuse opportunities, resulting in poor cache
utilization and unnecessary data movement.

b) High Memory Consumption from Intermediate Bit-
streams. Separate loops per instruction require intermediate bit-
streams to be explicitly stored between loops. As programs grow,
these temporary bitstreams significantly increase GPU memory
usage (further analyzed in Table 4), limiting scalability.

c) Missed Opportunities to Skip Redundant Computation.
Intermediate bitstreams often contain large portions of zeros due
to partial or complete regex mismatches, which occur commonly in
practice [53, 78]. However, loops in sequential execution lack visibil-
ity into subsequent computations, making it difficult to dynamically
detect and skip these redundant blocks.

3.3 Key Insight: Interleaved Execution
Our key insight is to adopt an interleaved executionmodel, in which
all bitstream instructions are fused into a single loop. In each it-
eration, the fused loop executes all bitstream instructions on the
current data block before proceeding to the next, enabling better
data reuse, lower memory consumption, and the ability to skip
redundant computation. To realize it, this paper presents three key
techniques (Section 4, Section 5, and Section 6). Together, they are
integrated into BitGen, enabling interleaved execution to be both
practical and performant for real-world bitstream workloads.

4 Enabling Interleaved Execution via
Dependency-Aware Thread-Data Mapping

This section describes the cross-block dependencies in interleaved
execution and how we resolve them.

4.1 Challenges of Interleaved Execution
Figure 6 (a) shows two bitstream programs and their block-wise
execution using a straightforward GPU kernel, also shown as se-
quential execution in Figure 1 (a). Each instruction runs in a separate
loop that iterates over its operands, writing results back to global
memory before the next instruction begins.

To improve data reuse, we propose interleaved execution via loop
fusion. Operand blocks are loaded once, and intermediate results
are kept in registers across instructions, reducing global memory
traffic. Basic instructions like AND and OR are easy to fuse since they
use only thread-local data, but care is needed for instructions with
cross-block dependencies:

Cross-block Dependencies. Figure 6 (b) shows the loop-fused
execution of the two example programs. In Example 1, the AND

instruction is fused with the SHIFT instruction. Each CTA con-
sists of 4 threads (𝑇 = 4), with each thread processing a data unit
of 2 bits (𝑊 = 2). The bitstream consists of two blocks (𝑁 = 2).
Example 1 illustrates a data dependency violation caused by the
SHIFT operation under interleaved execution. The SHIFT operation
at line 2 depends on the result of the AND operation at line 1. Since
each thread holds its unit of B3 in registers, it accesses the preced-
ing thread’s data via shared memory within the CTA. However,
since the fused kernel executes block-wise across two iterations,
the first thread in the second iteration cannot access the last bit of
the preceding block’s result (B3), which is required for the RSHIFT
operation. As a result, the first bit of B3 in iteration 2 is missing,
leading to incorrect output.

One possible solution to address cross-iteration dependencies
is to forward intermediate results via registers. However, this ap-
proach is not generally applicable due to several limitations. First,
when SHIFT instructions appear frequently, each would require a
dedicated register for forwarding. Second, SHIFT instructions in bit-
stream programs may appear in both directions (i.e., left and right).
Register forwarding inherently supports only one direction (e.g.,
from the previous iteration), and thus cannot handle bi-directional
dependencies. Third, cross-block dependencies caused by SHIFT
also affect the correctness of control-flow constructs:

In Example 2, the program includes a conditional statement
that checks whether S1 is all zeros. When regular expressions are
compiled into bitstream programs, such control flow constructs are
transformed into predicated execution, where all the instructions
inside a conditional block are guarded by a predicate derived from
the condition variable (e.g., whether S1 contains any 1 s). While
predicated instructions simplify analysis and enable loop fusion
across conditional blocks, they do not eliminate data dependencies
across iterations in interleaved execution: Example 2 in Figure 6 (b)
shows that in Iteration 2, since B1 is all zeros, the loop chooses to
skip the instructions inside the if block. However, this decision is
incorrect: the SHIFT operation in line 3 still propagates a bit from
the previous iteration, leading to an incorrect value in B42.

Overall, shift operations introduce cross-block dependencies that
pose correctness challenges for interleaved execution. We address
these challenges with a dependency-aware thread-data mapping
strategy, as detailed in Section 4.2.

4.2 Dependency-Aware Thread-Data Mapping
We introduce a dependency-aware thread-data mapping scheme
that addresses the cross-block dependencies shown in Section 4.1.
The key idea of our approach is to recompute the required bits within
the current iteration, avoiding the complexity and limitations of for-
warding intermediate results from “past” or “future” iterations.

Illustrative Example of Dependency-Aware Mapping. To de-
termine which bits we should recompute for each block, we begin
with a simple case (Example 1 in Figure 6) where the shift distance
is statically known at compile time. In Figure 6 (c), the RSHIFT op-
eration at line 2 shifts by one bit, which introduces a cross-block
dependency: the first bit in the current iteration depends on the
last bit of the previous iteration. To ensure correctness, we adjust
the starting position of each iteration so that it overlaps with the
preceding block by enough bits to cover the shift distance. Given

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianao Ge, Xiaowen Chu, and Hongyuan Liu

S3 = S1 & S2
S4 = S3 ≫ 1

Example 2:Example 1:

(a) Bitstream Program and Sequential Block-Wise Execution Before Fusing

(b) Direct Loop Fusion

(c) Fused Loop with Dependency-Aware Thread-Data Mapping

if (S1):
S3 = S1 & S2
S4 = S3 ≫ 1

!"

!#
&

≫ 1
!'

Iter 1
T1 T2 T3 T4

Iter 2
T1 T2 T3 T4

Error

.11..1.11.1.1.1.

1..1.1.11.1.1.1.

.....1.11.1.1.1.

....1.1..1.1.1..!(
sync sync

!"

!#

!$
&

≫ 1
!(

T1 T2 T3 T4
T1 T2 T3 T4

.11..1.11.1.1.1.

1..1.1.11.1.1.1.

.....1.11.1.1.1.

....1.11.1.1.1..

Iter 1 Iter 2

sync sync

(2 bits overlap)(2 bits overlap)

!"

!#

!$
&

≫ 1
!(

T1 T2 T3 T4
T1 T2 T3 T4

)*(!#) True True

........1.1.1.1.

........1.1.1.1.

........1.1.1.1.

.......1.1.1.1..

Iter 1 Iter 2

sync sync

!"

!#

!$
&

≫ 1
!(

T1 T2 T3 T4 T1 T2 T3 T4)*(!#) True False

Error

........1.1.1.1.

........1.1.1.1.

........1.1.1.1.

.........1.1.1..

Iter 1 Iter 2

sync
skip

for Bi in S:
B3i = B1i & B2i

for Bi-1,Bi in S:
B4i = [B3i-1,B3i] ≫ 1

for Bi-1,Bi in S:
B3i = B1i & B2i
B4i = [B3i-1,B3i] ≫ 1

1
2

for Bi in S:
B3i = B1i & B2i
B4i = B3i ≫ 1

1
2

for Bi-1,Bi in S:
if (B1i):

B3i = B1i & B2i
B4i = [B3i-1,B3i] ≫ 1

1
2
3

for Bi in S:
if (B1i):

B3i = B1i & B2i
B4i = B3i ≫ 1

1
2
3

if (S1):
for Bi in S:

B3i = B1i & B2i
for Bi-1,Bi in S:

B4i = [B3i-1,B3i] ≫ 1

Figure 6: Challenges in enabling interleaved execution via loop fusion. (a) Original bitstream program with sequential block-
wise execution. (b) Directly fusing all bitstream instructions into one loop introduces correctness issues due to cross-block
dependencies. (c) Our approach resolves these dependencies by recomputing necessary bits through dynamic thread-to-data
mapping. Intermediate blocks stored only in thread-local registers are shown in gray.

a word size𝑊 , CTA size 𝑇 , and the number of overlap distance in
bits Δ, we compute the iteration offset as 𝑇 − [︂Δ⇑𝑊 ⌉︂ ×𝑊 . This en-
sures that all bits required by the SHIFT operation are recomputed
within the current iteration. For example, when𝑊 = 2 and Δ = 1,
the second iteration starts at bit position 6 instead of 8, recomput-
ing the necessary bits (the 7th bit) to maintain correctness. This
mapping ensures correctness for both left and right shift opera-
tions by overlapping words just enough to cover any cross-block
dependencies introduced by bitwise shifts in either direction.

Computing Overlap Distance.We consider the dataflow graph
(DFG) of the bitstream program. We define 𝛿𝑖 as the cumulative
bit offset introduced by SHIFT operations up to the 𝑖-th operation
along a dataflow path. Starting from 𝛿0 = 0, each SHIFT instruction
updates the offset as: 𝛿𝑖+1 = 𝛿𝑖 + 𝑘𝑖 , where 𝑘𝑖 is the signed shift
distance at step 𝑖 (positive for right shift, negative for left shift).
This sequence {𝛿𝑖} reflects the positions of all accessed bits along
the path 𝑃 . We define the required overlap distance as:

Δ = max
𝑃∈Paths(max

𝑖
𝛿𝑖 −min

𝑖
𝛿𝑖)

Figure 7 (a) shows an example with two right shifts. In the path
B1→ B5→ B6→ B7→ B4, each right shift accumulates a bit offset
from the original input B1. With two shifts along the path, the
combined effect results in accessing a bit two positions earlier in

B1 when computing each bit in B4 (Δ = 2). We illustrate another
example to clarify the sequence {𝛿𝑖}. Consider a bitstream program
with one dataflow path of two operations: first a right shift by 1,
and then a left shift by 2 (b = a ≫ 1, c = b ≪ 2). The resulting
cumulative offset sequence is {0, 1,−1}. To ensure correctness, the
current block starts 2 bits earlier and recomputes them (Δ = 2). This
covers the 1 bit required by the previous block due to the right shift
and the 2 left-shifted bits within the current block.

Tracking the cumulative shift offset 𝛿𝑖 at each step allows us to
precisely determine which input bits are accessed. This is essential
for computing the overlap distance Δ, which guarantees correctness
under interleaved execution. After Dependency-Aware Mapping,
the fused loop requires three iterations to compute in example 1
of Figure 6 (c). We will discuss the overhead of recomputing in
Section 8.2.

Handling Loops.When the DFG contains multiple loops (either
nested or parallel), we need to model how SHIFT operations accu-
mulate across different loop iterations. To handle this, we express
the overlap distance Δ as a function of all loop iteration counters
𝑛1, 𝑛2, ..., 𝑛𝐿 , , where 𝐿 is the number of loops in the DFG. For each
shift instruction 𝑠 , we define a multiplicity function 𝜇𝑠 (𝑛1, ..., 𝑛𝐿),
which represents how many times this shift instruction is executed,
depending on the loop structure it belongs to. The cumulative bit
offset 𝛿𝑖 at each step along a path is then: 𝛿𝑖+1 = 𝛿𝑖+𝜇𝑠(𝑛1, ..., 𝑛𝐿)⋅𝑘𝑠 .

Interleaved Bitstream Execution for Multi-Pattern Regex Matching on GPUs MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

for Bi in S:
B5 = B1 ≫ 1
B6 = B5 & B2
B7 = B6 ≫ 1
B4 = B7 & B3

1
2
3
4

>>

B1

&

>>

&

1

1

B3

B4

B2

!! = 1B5

B6!" = 1

!# = 2

!$ = 2

!% = 0

B7

(a) The loop with fixed overlap distance (Δ = 2).
for Bi in S:

B5 = B1 ≫ 1
B6 = B5 & B2
B7 = B6
while (B7):

n = n + 1
B8 = B7 ≫ 1
B9 = B8 & B3
B4 = B8
B7 = B9

>>

&

>>

&

1

1

B3

B4

B2

F

!! = 1 + %

B7?
T

B1

B7

!" = 0
B5

B6

B8

B9

!# = 1
!$ = 1

!% = 1 + %

!& = 1 + %
!' = 1 + %

1
2
3
4
5
6
7
8
9

(b) The loop with overlap distance offset (Δ = 1 + 𝑛, where 𝑛 is the
loop counter determined at runtime).

Figure 7: Illustration of overlap distance computation in bit-
stream programs. Left: Bit-wise execution of the bitstream
program. Right: Dataflow graph with cumulative bit offsets.

The overall overlap requirement is given by:

Δ(𝑛1, ..., 𝑛𝐿) = max
𝑃∈Paths(max

𝑖
𝛿𝑖 −min

𝑖
𝛿𝑖)

This formulation generalizes to loops, enabling dynamic overlap
computation under interleaved execution. For example, Figure 7 (b)
shows a program containing a while loop along with its corre-
sponding DFG. In this program, the dataflow path from input B1 to
output B4 includes two shift operations: the first RSHIFT on B1 oc-
curs outside the loop and is executed once, while the second RSHIFT
on B7 resides inside the while loop and is executed once per loop
iteration. Assuming the loop executes 𝑛 times, the cumulative bit
offset along the path becomes: 𝛿(𝑛) = 1 ⋅ (+1) + 𝑛 ⋅ (+1) = 1 + 𝑛.
This means that computing B4 requires accessing bits in B1 that are
1 + 𝑛 positions earlier, which may reside in a different interleaved
iteration. To ensure correctness, the current iteration must be able
to recompute all bits within this range, and the required overlap
becomes Δ(𝑛) = 1 + 𝑛. Thus, the loop iteration counter 𝑛 will be
inserted into the program to record the required overlap distance
for each iteration.

5 Reducing Synchronization Overhead via Shift
Rebalancing

This section describes how interleaved execution introduces addi-
tional synchronization and how we reduce it.

5.1 Source of Synchronization
This section discusses the synchronization challenges in interleaved
execution: 1) Fused loops require intra-loop barriers to resolve

cross-block dependencies, and 2) long dependency chains across
instructions further exacerbate the overhead.

Intra-Loop Synchronization in Interleaved Execution. In
sequential execution, each bitstream instruction is compiled into
its own loop. Instructions run one after another, writing results
to global memory before the next begins. Since each thread pro-
cesses independent data and there are no cross-thread dependencies
within a loop, no intra-loop synchronization is needed. Interleaved
execution, in contrast, fuses all instructions into a single loop to
enhance memory reuse and reduce global memory traffic. Interme-
diate results stay in thread-local registers, avoiding global memory
altogether. However, a SHIFT operation requires two barriers: one
before to ensure all inputs are loaded into shared memory, and one
after to ensure outputs are ready for the next bitstream instruction.

Long Dependency Chains. The SHIFT operation is a fundamen-
tal building block to express concatenation in regular expressions
(Figure 2 (b)). Thus, synchronization is introduced whenever con-
catenation appears in a regex. For example, the left side of Figure 8
shows the interleaved execution code and its dataflow graph for
regex /abb/. In the DFG, the original program has two RSHIFT
instructions and two AND instructions, forming a dependency chain.
Such a dependency chain leaves no room for instruction schedul-
ing. Specifically, the AND operation at line 4 depends on B6, which
becomes available only after the synchronization following the
RSHIFT at line 3, even though B3 is already ready for use. We call
this structure unbalanced, as each instruction depends on the previ-
ous, forming a sequential dataflow path. Breaking the dependency
chain and making SHIFT instructions schedulable allows multiple
SHIFT operations to share common synchronization points, offering
the opportunity to reduce synchronization overhead.

5.2 Rebalancing Dependency Chains
This section presents our technique for breaking long dependency
chains and restructuring them into more balanced trees.

Operand Rewriting. Long dependency chains with SHIFT and
bitwise operations can stall execution due to frequent barriers.
To reduce this, we apply operand rewriting, an algebraic transfor-
mation that shifts dependencies between operands. For instance,(A ≫ n) & B can be rewritten as (A & (B ≪ n)) ≫ n, assuming
unbounded bitstreams. This preserves semantics while removing
SHIFT from the critical path, allowing earlier scheduling for the
ready operand. In this example, if 𝐵 is ready first, rewriting allows
the SHIFT on 𝐵 to execute earlier.

Shift Rebalancing for Bitstream Programs. Operand rewrit-
ing ensures the semantic correctness of switching dependencies
between operands. To break the long dependency chain in bitstream
programs, we apply a transformation pass that uses operand rewrit-
ing to rebalance SHIFT instructions in the dataflow graph repeatedly.
The key idea is to rewrite data dependencies in the graph such that
SHIFT instructions are applied to operands that appear earlier in
the execution order. For example, consider an expression of the
form (A ≫ 1) & B, where operand 𝐴 depends on 𝑥 preceding op-
erations and 𝐵 depends on 𝑦 operations in the dataflow graph. If
𝑥 > 𝑦, it is beneficial to move the SHIFT instructions to 𝐵, resulting
in (A & (B≪ 1)) ≫ 1. This rewrite reduces the critical path length

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianao Ge, Xiaowen Chu, and Hongyuan Liu

B1

&

>>

&

1

1

B4

B2

<<

<<

B3 1

>>

1

Original Code:
Shift rebalance at lines 2 & 4

Iteration 1:
Shift rebalance at line 5

for Bi in S:
B5 = B2 ≪ 1
B6 = B1 & B5
B7 = B3 ≪ 2
B8 = B6 & B7
B4 = B8 ≫ 2

1
2
3
4
5

Iteration 2:
Converged

B1

&

&

1

B4

B2

<<

<<

B3 2

>>

2

>>

B1

&

>>

&

1

1

B3

B4

B2

▷
depth = 2 depth = 1

depth = 4 depth = 1
▷

depth = 2▷depth = 4

for Bi in S:
B5 = B1 ≫ 1
B6 = B5 & B2
B7 = B6 ≫ 1
B4 = B7 & B3

▷Rebalance

▷Rebalance

1
2
3
4

for Bi in S:
B5 = B2 ≪ 1
B6 = B1 & B5
B7 = B6 ≫ 1
B8 = B3 ≪ 1
B9 = B7 & B8
B4 = B9 ≫ 1

▷Rebalance

1
2
3
4
5
6

Figure 8: Shift Rebalancing iteratively rewrites operands to produce a more balanced and schedulable DFG.

by shifting the dependency to a shallower operand with fewer pre-
ceding operations. Our algorithm performs a topological traversal
of the dataflow graph for each iteration. For each AND, if an operand
is a SHIFT, it is moved to the operand with lower topological depth,
thereby shortening the dependency chain. This transformation is
applied iteratively until a fixpoint is reached. An additional itera-
tion is triggered when new opportunities for operand rewriting are
identified. Figure 8 shows an example of this process. In the initial
graph, two AND instructions (lines 2 and 4) are rebalanced in the
first iteration. In the second iteration, the AND at line 5 is further
transformed, resulting in a final dataflow graph where the SHIFT
instructions apply to B1 and B3. Since B3 is available, the shifted
value can be computed earlier. Although this transformation may
introduce new SHIFT instructions, they are merged after the last
AND instructions (e.g., as seen in line 5 of Iteration 2). Shift Rebalanc-
ing improves schedulability, which we leverage to reduce barriers
in Section 5.3.

5.3 Merging Barriers of Shift Instructions
This section describes how we schedule and merge the barriers of
SHIFT instructions to improve efficiency after Shift Rebalancing.

Scheduling and Merging Barriers. After applying Shift Rebal-
ancing, we reduce synchronization overhead by scheduling and
merging SHIFT instructions. A SHIFT can be delayed and scheduled
at the point where all its operands become available. Our merging
algorithm uses a greedy approach, processing instructions sequen-
tially. For each SHIFT instruction, we attempt to merge it with the
preceding SHIFT if: (1) its operands are ready at the position of
the preceding SHIFT, and (2) the number of merged SHIFT instruc-
tions does not exceed the allowed maximum. The maximum limit
is constrained by available shared memory, as merging more in-
structions requires storing more blocks. When merged, the later
instruction is scheduled to the position of the earlier one, allowing
their barriers to be combined. If merging is not possible, the current
SHIFT instruction becomes the starting point for subsequent merg-
ing attempts. In our evaluation, the maximum number of SHIFT
instructions that can be merged together (referred to as merge size)
is exposed as a tunable parameter described in Section 7.

Figure 9 shows an example based on the transformed results from
Figure 8. In 1 , the SHIFT instructions at lines 1 and 3 operate directly
on input bitstreams B2 and B3, and can therefore be scheduled
earlier, near the beginning of the program (2). Once co-located,
the barriers of SHIFT instructions at lines 1 and 2 in 2 can be

sync
smem1[tid] = B2
sync
B5 =[smem1[tid-1], smem1[tid]] ≪ 1

for Bi in S:
B5 = B2 ≪ 1
B6 = B1 & B5
B7 = B3 ≪ 2
B8 = B6 & B7
B4 = B8 ≫ 2

for Bi in S:
B5 = B2 ≪ 1
B7 = B3 ≪ 2
B6 = B1 & B5
B8 = B6 & B7
B4 = B8 ≫ 2

for Bi in S:
B5, B7 = B2 ≪ 1, B3 ≪ 2
B7 = B6 = B1 & B5
B8 = B6 & B7
B4 = B8 ≫ 2

sync
smem1[tid] = B2
smem2[tid] = B3
sync
B5 =[smem1[tid-1], smem1[tid]] ≪ 1
B7 =[smem2[tid-1], smem2[tid]] ≪ 2 sync

smem1[tid] = B3
sync
B7 =[smem1[tid-1], smem1[tid]] ≪ 2

Schedule Merge

Thread

Thread

Thread

1
2
3
4
5

1
2
3
4
5

1
2
3
4

❶ ❷ ❸

Figure 9: Independent SHIFT operations are scheduled to-
gether, allowing their barriers to be merged.

merged. Therefore, B2 and B3 can be written to sharedmemory with
one barrier (3). Figure 9 also shows per-thread execution before
and after merging. Two SHIFT instructions originally require four
synchronizations, which are reduced to two.

Removing Redundant Bitstream Copies in Shared Memory.
In bitstream programs, multiple SHIFT operations may apply dif-
ferent shift amounts to the same bitstream. For example, when
Figure 9 represents the regex /abb/, the same bitstream for char-
acter b (B2 and B3) is used in two SHIFT operations—by 1 and 2
bits—to produce B5 and B7. When such operations are merged, we
can identify the shared input and avoid storing multiple copies by
storing only the unshifted version. The shifted values are then re-
computed locally as needed. As more SHIFT operations are merged,
this optimization becomes increasingly effective in reducing mem-
ory traffic and helps amortize the additional shared memory usage
introduced by scheduling and merging barriers.

6 Reducing Redundant Computation through
Zero Block Skipping

This section discusses the missed opportunity to skip redundant
computation in sequential execution and demonstrates how we
exploit it in our interleaved execution.

Zero values are prevalent in bitstreams, especially in regexmatch-
ing, where a zero bit typically indicates a mismatch. When such
mismatches occur, thematching process can terminate early, render-
ing subsequent operations unnecessary. In bitstream programs, this
behavior provides an opportunity for skipping computations that

Interleaved Bitstream Execution for Multi-Pattern Regex Matching on GPUs MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

B1

&

&

1

B10

B2

<<

<<

B3 2

>>
2

<< & & >>

<< & >>

B9

B9

Path 1:

B7

B4 B6 B8

Path 2:

check
(a) Dataflow graph and original code.

(b) Zero paths.

B7

B8

|

|

B6

B9

B4

B5

B8

check check

check check

(c) Modified code after inserting check at B6.

line 1 line 3 line 5

line 4 line 5 line 6

line 6

for Bi in S:
B4 = B2 ≪ 1
B5 = B4 | B3
B6 = B1 & B4
B7 = B3 ≪ 2
B8 = B6 & B7
B9 = B8 ≫ 2
B10 = B9 | B5

1
2
3
4
5
6
7

for Bi in S:
B4 = B2 ≪ 1
B5 = B4 | B3
B6 = B1 & B4
B9 = 0
if (!B6): goto line 9
B7 = B3 ≪ 2
B8 = B6 & B7
B9 = B8 ≫ 2
B10 = B9 | B5

1
2
3
4
5
6
7
8
9

Figure 10: Illustration of identifying zero paths and inserting
conditional branches.

are guaranteed to yield zero values, similar to short-circuiting in
logical operations. Specifically, operations such as AND and SHIFT
on zero-valued inputs will always yield zero outputs. However,
enabling zero-skipping in sequential block-wise execution of bit-
stream programs on GPUs is challenging. Even if a block is entirely
zero, the loop must proceed to the next block, since cross-block
dependencies prevent early termination.

Leveraging Interleaved Execution to Exploit Sparsity. To
address this limitation, BitGen introduces Dependency-Aware
Thread-Data Mapping to enable interleaved block-wise execution
by dividing the bitstream into blocks and recompute the necessary
bits. All bitstream instructions, including control flow (e.g., Example
2 in Figure 6), are fused into one loop, enabling us to skip redundant
work on sparse bitstreams.

Identifying Zero Paths. To exploit sparsity in bitstream execu-
tion, we insert runtime conditionals that dynamically skip redun-
dant computations. The key to this optimization is the identification
and utilization of zero paths. A zero path is a sequence of instruc-
tions within the DFG where zero inputs guarantee zero outputs,
consisting of zero-preserving operations AND and SHIFT. At run-
time, detecting whether a variable in its zero path is zero allows
skipping the remaining chain of computations along this path. Ini-
tially, we identify zero paths by traversing the DFG and locating
paths composed exclusively of operations that preserve the zero-
value property. Figure 10 (a) illustrates a bitstream program along
with its DFG. We identify its two zero paths shown in Figure 10 (b).

Conditional Branch Insertion. Once zero paths are identi-
fied, we attempt to insert conditional branches to skip unnecessary
computations. To reduce the number of conditional branch instruc-
tions at runtime, we do not use variable guards for each bitstream
instruction. Instead, we insert goto statements in CUDA. Specif-
ically, at the head of each zero path, we insert a runtime check
(e.g., if (!B) goto LABEL), which directly skips to the instruction
following the last node in the zero path if B is zero. However, since

zero paths identified in the DFG might not correspond to contigu-
ous instructions in the linear execution order, simply inserting a
guard at the head and skipping directly to the end may inadver-
tently skip over essential instructions not part of the zero path,
potentially causing incorrect results. To ensure correctness, each
proposed conditional goto along the zero path is validated before
insertion. If the skipped range includes an instruction that defines
a variable used outside the path, the insertion is rejected. Although
instruction reordering could resolve this, we avoid it for simplicity.
The process continues at the next node until a valid insertion is
found or the path ends. This branch does not cause warp divergence,
as all threads in the CTA use a shared condition computed via a
block-wide reduction with atomicOr.

For example, in Figure 10 (b), we begin by attempting to insert a
guard at B4 in Path 1, the head of a zero path, and it will skip the
instructions from line 2 to line 6 in the original code. However, we
found that the instruction at line 2 is not on the zero path and is
used at line 7, so the insertion fails. Figure 10 (c) shows the modified
code after inserting conditional checks at B6.

Interval-Based Multi-Guard Insertion. As zero paths can be
lengthy, using only one guard at the head may not fully exploit
available sparsity. Hence, we introduce an interval parameter 𝐼 that
controls guard insertion frequency along zero paths. Specifically,
every 𝐼 instructions along a zero path, we attempt the insertion
of additional conditional branches following the same validation
criteria described above. We leave it as a tunable parameter in our
evaluation (referred to as interval size), given that its optimal setting
depends on the input.

7 Evaluation Methodology
Experimental Setup. We implement our source-to-source com-
piler, BitGen in Python that generates optimized GPU kernels from
bitstream programs produced by Parabix [24, 50]. The CUDA ker-
nels are compiled at runtime using NVRTC [6]. During execution,
the GPU first launches a preprocessing kernel to transpose the
input data into bitstreams (Section 2). The generated kernel then
processes the bitstream instructions for regex matching, including
character classes and other patterns. Experiments are conducted
primarily on an NVIDIA RTX 3090 (Ampere, 24 GB, 82 SMs), with
evaluations on an H100 NVL (Hopper, 94 GB, 132 SMs) and L40S
(Ada, 48 GB, 142 SMs) to assess portability. CPU schemes are run on
an Intel Xeon Platinum 8562Y+ (32 cores, hyperthreading disabled).
All programs are compiled with CUDA 12.4 and GCC 13.2. We use
architecture-specific CUDA compilation flags to match the native
GPU architecture of the target device.

Each benchmark is executed 10 times, and we report the average
execution time, including both the input transpose and the gen-
erated kernel for bitstream processing. The transpose on input is
highly parallel and efficient; transposing 1 MB on an RTX 3090
typically takes about 0.026 ms (37,449 MB/s), regardless of the
regex patterns or input data, causing negligible performance over-
head. Following prior work [37, 39], we report steady-state kernel
execution time for each benchmark using its predefined regex pat-
terns. Compilation and data transfer time are excluded, as they can
be amortized over multiple runs or overlapped during execution.
Throughput is measured in MB/s as the number of input symbols

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianao Ge, Xiaowen Chu, and Hongyuan Liu

Table 1: Statistics of the evaluated applications, including the
number of regular expressions, their average (Avg.) and stan-
dard deviation (SD.) in character length, and the instruction
count breakdown of their corresponding bitstreamprograms.

Regex Length #InstructionApp #Regex Avg. SD. and or not shift while
Brill 1,849 44.4 16.9 82,604 21,227 19,124 48,983 15,028

ClamAV 491 359.7 310.7 71,135 4,469 4,855 45,129 566
Dotstar 1,279 52.8 30.8 68,311 5,600 4,949 42,598 183

Protomata 2,338 96.5 36.2 63,809 44,291 8,772 31,580 305
Snort 1,873 50.5 41.5 84,481 18,608 10,725 47,560 4,742
Yara 3,358 32.5 24.9 105,612 8,332 5,162 76,756 7

Bro217 227 34.1 27.9 8,918 1,025 2,339 2,598 11
ExactMatch 298 52.9 19.2 25,582 1,242 2,945 12,197 2
Ranges1 298 54.3 19.4 27,256 2,263 3,710 12,421 238
TCP 300 53.9 21.4 26,830 1,827 3,363 12,507 149

processed per second.We use Nsight Compute [4] to collect detailed
kernel metrics. We validate results by comparing match positions
and counts against icgrep’s reference output.

Evaluated Schemes.We compare BitGen with three state-of-
the-art regex matching systems: (1) ngAP [37, 38], a GPU-based
engine with non-blocking automata processing optimizations; (2)
icgrep (v1.0) [24], a CPU-based SIMD engine built on Parabix and
bitstream processing; (3) Hyperscan (v4.4.1) [3, 83], Intel’s industry-
standard CPU engine featuring NFA decomposition, SIMD acceler-
ation, string matching optimizations, and prefiltering. All systems
are configured with recommended optimizations: ngAP is tuned
per application for best GPU performance. We evaluate Hyper-
scan in both single-threaded (HS-1T) and multi-threaded (HS-MT)
modes [3, 13]. HS-MT parallelizes across regexes, but its scalability
varies across applications due to factors such as cache contention,
memory bandwidth saturation, and workload imbalance. For each
application, we sweep the number of threads (1, 2, 4, 8, 16, 32) and
report the best-performing configuration for HS-MT.

Parameter Setup. BitGen exposes four key parameters: two
for our proposed optimizations and two for CUDA kernel execution.
The optimization parameters aremerge size and interval size. Merge
size defines the maximum number of SHIFT instructions merged
into one (Section 5.3), while interval size controls the frequency
of inserting conditional branches to skip unnecessary computa-
tion (Section 6). The CUDA-related parameters are CTA count and
max register number. CTA count sets the number of CTAs for ker-
nel execution. Regexes are partitioned into groups with similar
total character length, each assigned to one CTA to balance GPU
workload. Max register number limits the registers per thread (via
–maxrregcount) to reduce spilling while maintaining occupancy.
For overall performance evaluation, we use the best-tuned parame-
ters for each application. In other experiments, such as performance
breakdowns, we use fixed default values: merge size = 8, interval
size = 8, CTA count = 256, and max register number = 128. We
also conduct sensitivity studies on the optimization parameters to
analyze their impact on performance in Section 8.2.

Benchmarks. We evaluate performance using ten real-world
regex applications from benchmark suites: AutomataZoo [82], AN-
MLZoo [80], and Regex [19]. Since ngAP and icgrep lack support

Brill
ClamAV

Dotsta
r

Protomata
Snort Yara

Bro217

ExactM
atch

Ranges1TCP
Gmean

10 1

100

101

102

103

Th
ro

ug
hp

ut
no

rm
al

iz
ed

 t
o

ng
AP

19
.5

6.
5 11

.7
1.

0
0.

8

bitGen HS-1T HS-MT ngAP icgrep

Figure 11: Throughput results normalized to ngAP.

Table 2: Throughput of evaluated applications. Thpt:
Throughput in MB/s. SpdUp: Speedup of BitGen over each
scheme.

bitGen HS-1T HS-MT ngAP icgrepApp Thpt Thpt SpdUp Thpt SpdUp Thpt SpdUp Thpt SpdUp
Brill 85.3 5.1 16.7× 33.4 2.6× 3.5 24.4× 2.8 30.5×

ClamAV 1026.8 244.2 4.2× 284.4 3.6× 2.6 394.9× 37.6 27.3×
Dotstar 678.9 249.4 2.7× 275.7 2.5× 44.9 15.1× 28.3 24.0×

Protomata 15.7 1.7 9.2× 21.1 0.7× 6.3 2.5× 1.8 8.7×
Snort 391.8 79.6 4.9× 101.0 3.9× 43.0 9.1× 14.3 27.4×
Yara 638.3 793.7 0.8× 847.2 0.8× 20.2 31.6× 11.3 56.5×

Bro217 2013.2 991.8 2.0× 991.8 2.0× 108.2 18.6× 95.5 21.1×
ExactMatch 1986.5 3348.2 0.6× 3398.7 0.6× 99.5 20.0× 49.8 39.9×
Ranges1 1246.1 352.5 3.5× 891.0 1.4× 102.2 12.2× 48.2 25.9×
TCP 1678.1 894.8 1.9× 900.1 1.9× 103.1 16.3× 93.3 18.0×

Gmean — — 3.0× — 1.7× — 19.5× — 25.3×

for some regex features, we select only regexes supported by all sys-
tems. Table 1 summarizes these applications, including regex details
and bitstream instruction type breakdowns. We use MNCaRT [13]
and VASim [81] to convert regexes into automata for ngAP. Each
application processes 106 bytes of input from the benchmark suites,
representing real-world scenarios for practical relevance.

8 Experimental Results
8.1 Overall Performance
Figure 11 shows the normalized throughput of the evaluated appli-
cations. BitGen significantly outperforms both CPU and GPU base-
lines, achieving an average speedup of 3.0× over single-threaded
Hyperscan, 1.7× over multi-threaded Hyperscan, 19.5× over ngAP,
and 25.3× over icgrep. The absolute throughput of those applica-
tions is shown in Table 2.

Comparison to ngAP. BitGen consistently outperforms ngAP
across all applications, achieving up to 394.9× speedup on ClamAV,
with more than 10× improvement in 8 out of 10 applications. These
gains result from BitGen’s efficient bit-parallel approach to regex
matching. In contrast, ngAP relies on an NFA-based method that
requires multiple memory accesses for each symbol-state compar-
ison, leading to irregular memory patterns. Although it adopts a
worklist design to expose symbol-level parallelism, the added mem-
ory overhead and limited worklist size can restrict GPU utilization.
For instance, ClamAV includes many regex patterns for virus byte
sequences. For most non-virus inputs, only a small number of states
become active, resulting in short worklists that fail to saturate GPU

Interleaved Bitstream Execution for Multi-Pattern Regex Matching on GPUs MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Table 3: Breakdown of BitGen to evaluate effect of each
optimization.

Abbr.
Dependency-Aware

Thread-Data Mapping Shift
Rebalancing

Zero Block
SkippingStatic Dynamic

Base
DTM− ✓
DTM ✓ ✓
SR ✓ ✓ ✓
ZBS ✓ ✓ ✓ ✓

resources. BitGen avoids this issue by using compact bitwise oper-
ations. Our interleaved execution model allows most computations
to happen in registers, reducing memory accesses and control flows.

Comparison to Hyperscan. BitGen achieves a geometric mean
speedup of 3.0× and 1.7× over HS-1T and HS-MT, respectively.
In particular, it achieves up to 3.9× improvement on Snort com-
pared to HS-MT. HS-MT outperforms BitGen only on three ap-
plications (Protomata, Yara, and ExactMatch). We observe that
most regexes in these applications are simple string patterns, which
benefit from Hyperscan’s decomposition optimizations and highly-
tuned SIMD-based string matching implementation [61].

HS-MT exhibits limited scalability: its multithreaded perfor-
mance is only 1.76× that of HS-1T, constrained by cache contention,
memory bandwidth saturation, and workload imbalance. BitGen
achieves an average 1.7× speedup over HS-MT.While RTX 3090 has∼4.5× higher theoretical integer throughput than the Xeon 8562Y+
(17.8 TIOPS vs. 3.9 TIOPS), this ratio does not directly translate to
application-level speedup because Hyperscan incorporates many
specialized optimizations, particularly for string literals, that sig-
nificantly reduce the amount of computation on the CPU [61]. In
contrast, BitGen focuses solely on bitstream programs and does not
include regex-specific optimizations; these are orthogonal to our ap-
proach and could be incorporated to further improve performance in
future work.

Comparison to icgrep. Although both BitGen and icgrep use
bitstream processing for regular expression matching, BitGen con-
sistently delivers much higher performance–achieving an average
speedup of 25.3× across all applications. This performance gap
results from BitGen’s effective utilization of GPU’s massive par-
allelism on bitstreams. The performance difference is particularly
evident in large-scale applications such as Brill, Yara, and Snort,
where icgrep’s execution efficiency degrades considerably.

Discussion: Applicability to CPUs. The core optimizations
in BitGen are specifically designed for GPU architectures and
do not directly apply to CPUs. First, CPUs rely on narrow SIMD
units (e.g., AVX-512) that operate in lockstep and require uniform
control flow. BitGen’s dynamic thread-to-data mapping and zero
block skipping break this uniformity and is inefficient on CPU
SIMD lanes. Second, BitGen leverages shared memory for intra-
thread communication, which has no counterpart on CPUs. Finally,
BitGen tolerates redundant recomputation to resolve cross-block
dependencies, a tradeoff that is acceptable on GPUs but too costly
on CPUs with limited parallelism.

Brill
ClamAV

Dotsta
r

Protomata
Snort Yara

Bro217

ExactM
atch

Ranges1TCP
Gmean

0
10
20
30
40
50

Th
ro

ug
hp

ut
no

rm
al

iz
ed

 t
o

Ba
se

1.
0 4.

5
12

.0 17
.6

65.1

24
.9

Base DTM DTM SR ZBS

Figure 12: Performance breakdown of BitGen.

8.2 Optimization Analysis
To evaluate the impact of each optimization in BitGen, we compare
its performance with and without each technique, followed by a
profiling analysis under varying parameters.

Performance Breakdown. To understand the impact of each
optimization, we add them one at a time (as shown in Table 3) and
report performance after each step. The baseline only fuses loops
with bitwise operations, resulting in a sequential block-wise exe-
cution with partial interleaving. We exclude sequential execution
from our baseline comparison because it stores all intermediate
bitstreams, leading to excessive memory usage that exceeds the
available GPU memory. Figure 12 shows BitGen’s performance
normalized to the baseline. Dependency-Aware Thread-Data Map-
ping is split into DTM- (static analysis only) and DTM (with dynamic
analysis). DTM- improves shift-heavy applications like Yara (13.2×),
while DTM further benefits control-intensive ones like Brill (9.8×)
and Protomata (17.8×). Adding Shift Rebalancing (SR) raises per-
formance to 17.6× over the baseline. It is especially effective for bit-
stream programswith long dependency chains, such as ExactMatch
and ClamAV, which gain 1.4× and 1.3× over DTM alone. Zero Block
Skipping (ZBS) further increases the average speedup to 24.9×. For
example, Dotstar improves to 34.4× due to frequent zero-block
sequences in its regex patterns.

Memory Consumption and DRAM Accesses with DTM. Ta-
ble 4 shows the profiling results about memory consumption and
DRAM accesses for different levels of fusion in DTM. On average
across all evaluated applications, each CTA in the baseline, when
processing 1 MB of input, performs hundreds of MBs of DRAM ac-
cesses. For example, Brill incurs ∼102.2 GB of total DRAM traffic
across all CTAs. The large size of intermediate bitstreams leads to
excessive memory accesses and can exceed GPU memory capacity
when processing larger inputs, significantly reducing scalability. In
contrast, DTM merges all bitstream instructions into one loop, thus
does not need intermediate bitstreams. At runtime, it minimizes
memory traffic, issuing only 0.2 MB of DRAM reads and writes per
CTA on average.

Recompute Overhead of DTM. Table 5 summarizes the recom-
putation overhead of Dependency-Aware Thread-Data Mapping.
For most applications, only a small number of bits need to be re-
computed per iteration. Even in applications with complex control
flow like Brill and Protomata, the overhead is limited to approx-
imately one additional iteration of computation, demonstrating
DTM’s efficiency across diverse regex workloads.

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianao Ge, Xiaowen Chu, and Hongyuan Liu

Table 4: Compile-time and runtime profiling results in
Dependency-Aware Thread-Data Mapping, reported as the
average per CTA across all evaluated applications.

Compile-time Runtime
Scheme #Loop #Intermediate

Bitstream
DRAM Read

(MB)
DRAM Written

(MB)
Base 260.7 317.8 177.9 85.2
DTM− 17.6 54.2 124.4 53.6
DTM 1 0 0.2 0.2

Table 5: Recomputation Overhead in Dependency-Aware
Thread-Data Mapping. DTM recomputes both static and dy-
namic overlap distances.

Overlap Distance (bit)
App Avg.

Static
Avg.

Dynamic
Max

Dynamic

Recompute
% #Iter

Brill 3.2 160.1 514 1.00 63.1
ClamAV 2.9 0.1 209 < 0.01 62.2
Dotstar 2.8 0.7 72 < 0.01 62.0

Protomata 2.1 346.3 11678 2.13 63.4
Snort 3.2 2.5 489 < 0.01 62.2
Yara 5.0 < 0.1 8 < 0.01 63.0

Bro217 0.2 0 0 < 0.01 62.0
ExactMatch 0.8 < 0.1 2 < 0.01 62.0
Ranges1 0.8 0.9 24 < 0.01 62.0
TCP 0.8 0.1 30 < 0.01 62.0

Discussion: Limits of Overlap Distance in DTM. In
Dependency-Aware Thread-Data Mapping, the number of depen-
dent bits to recompute is determined by the accumulated overlap
distance. This distance can be dynamic when loops are present and
may exceed the size of a block. When this happens, dependency bits
beyond the block boundary become inaccessible, potentially leading
to incorrect or incomplete pattern matching. For example, specific
patterns such as /.*/, which match any sequence of characters
except line breaks, can exceed the overlap limit when processing
very long single-line inputs. With 512 threads and 32 bits per thread,
the maximum overlap distance is 16,384 bits (i.e., approximately 16
KB of input). If the required overlap distance exceeds this limit, the
current block would depend on multiple previous blocks, which
cannot be handled by interleaved execution. As shown in Table 5,
our evaluated applications do not encounter this issue. To address
this limitation, one possible solution is to introduce a fallback mech-
anism. If a loop reaches the overlap limit during execution, threads
within the CTA could fall back to sequential execution to generate
an intermediate bitstream for this loop. Subsequent interleaved exe-
cution could then skip the loop and directly consume this bitstream.
We leave the fallback mechanism as future work.

Sensitivity to Merge Size and Profiling Results in SR. We
evaluate the impact of merge size in SR using four configurations: 1,
4, 16, and 32. Figure 13 shows that performance improveswith larger
merge sizes, as more shift instructions can be merged. However, a
very large merge size can demand too much shared memory. Table 6
shows that larger merge sizes reduce barriers, lower percentage of

Brill
ClamAV

Dotsta
r

Protomata
Snort Yara

Bro217

ExactM
atch

Ranges1TCP
Gmean

0

1

2

3

Th
ro

ug
hp

ut
no

rm
al

iz
ed

 t
o

SR
_1

1.
0

1.
5 1.

6 1.
7

SR_1 SR_4 SR_16 SR_32

Figure 13: Normalized throughput of Shift Rebalancing with
different shared memory store merge sizes (1, 4, 16, 32).

Table 6: Compile-time and runtime profiling results of Shift
Rebalancing for various merge sizes, reported as the average
per CTA across all evaluated applications. #Sync: Number of
barriers in SHIFT instructions. SMem: Shared memory.

Compile-time Runtime
Scheme #Sync SMem Size

(KB)
Barrier Stall

%
SMem Access

(MB)
SR_1 305.1 2 49.6 70.2
SR_4 87.2 8 27.4 67.9
SR_16 41.4 32 19.0 63.9
SR_32 35.3 64 17.5 61.4

Brill
ClamAV

Dotsta
r

Protomata
Snort Yara

Bro217

ExactM
atch

Ranges1TCP
Gmean

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
no

rm
al

iz
ed

 t
o

ZB
S_

1

1.
0

1.
0 1.
1

1.
0

ZBS_1 ZBS_2 ZBS_4 ZBS_8

Figure 14: Normalized throughput of Zero Block Skipping
under different interval sizes (1, 2, 4, 8).

stall cycles due to barriers, and merge more shared memory stores,
resulting in fewer memory accesses overall.

Sensitivity to Interval Size in ZBS.We evaluate ZBS with inter-
val sizes of 1, 2, 4, and 8. When the interval size is 1, the zero-path
guard is inserted at every check point, maximizing skips but in-
creasing branching and synchronization overhead. Figure 14 demon-
strates the results. We observe that the optimal size varies by ap-
plication, as it depends on both input data and regex patterns. For
example, TCP performs best with interval size 4. Generally, a size
of 1 can add too many branches and sync overhead, while size 8
may miss chances to skip redundant instructions. Figure 12 shows
that enabling ZBS with the default interval size of 8 increases the
speedup from 17.6 to 24.9 compared to no ZBS.

8.3 Portability Studies
We evaluate BitGen’s performance portability across GPU archi-
tectures by comparing its throughput on the NVIDIA H100 and

Interleaved Bitstream Execution for Multi-Pattern Regex Matching on GPUs MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

bitGen ngAP
0.0
0.5
1.0
1.5
2.0
2.5

Th
ro

ug
hp

ut
no

rm
al

iz
ed

 t
o

30
90

1.0 1.0

1.6
1.0

2.0

1.4

3090 H100 L40S

Figure 15: Throughput of BitGen and ngAP on different
GPUs, normalized to RTX 3090.

L40S, normalized to the baseline RTX 3090. Figure 15 shows that
BitGen achieves 1.6× and 2.0× speedups on H100 and L40S, re-
spectively, while ngAP shows no improvement on H100 and only
1.4× on L40S. This difference is due to BitGen becoming compute-
bound after applying interleaved execution. Unlike ngAP, which is
more latency-sensitive and less parallel, BitGen maps well to mas-
sive thread-level parallelism and bitwise compute. The observed
speedup of BitGen aligns closely with the theoretical integer com-
pute throughput across these GPUs: 17.8, 33.5, and 45.8 TIOPS for
3090, H100, and L40S (≈ 1 ∶1.9 ∶2.6). Despite H100’s higher memory
bandwidth (HBM3 vs. GDDR6 on L40S), BitGen achieves better
performance on L40S due to its higher integer compute capacity
from more CUDA cores.

9 Related Work
The performance demands of regex matching have motivated ex-
tensive research on hardware accelerators [22, 25, 31, 33, 41, 47, 51,
56, 57, 66–74, 79, 85, 94]. This section focuses instead on execution
engines for CPUs and GPUs, and compares them with BitGen.

Regex Engines. Traditional regex engines often rely on back-
tracking, which can lead to exponential runtime in the worst
case [1, 16, 29, 30]. RE2 avoids this by compiling regexes into DFAs,
ensuring linear-time performance [5]. Prior work accelerates regex
matching by parallelizing automata via prefix sum, path enumer-
ation, or speculation [43, 54, 60, 87, 92, 93]. These optimizations
are orthogonal to our approach, as they aim to improve parallelism.
However, their efficiency drops when handling large sets of patterns
due to increased work [53]. This limitation is critical in applica-
tions like intrusion detection [7, 64, 91], antivirus scanning [2, 8],
and bioinformatics [21, 65], which require matching thousands
of regexes. Since our work targets this multi-regex setting, we
assign each regex group to a single CTA to simplify synchroniza-
tion using intra-CTA barriers at the cost of per-regex scalability.
Nonetheless, bitstream programs are naturally data-parallel, and
our techniques can be extended to multi-CTA execution with more
complex synchronization, which we leave to future work.

While some engines [45, 74] adopt variants of the Aho-Corasick
algorithm [9] to support multi-string matching, these methods do
not generalize to regexes. Hyperscan [83] addresses multi-regex
workloads by a hybrid approach: it decomposes complex patterns
into simpler components, applies fast string matching where pos-
sible, and leverages Glushkov NFAs [40] for the complex regexes.
Prior works [26, 52, 53, 76–78, 90, 95] have explored automata-based
engines for multi-regex matching on GPUs, but their performance
is often limited by irregular memory access patterns and divergent

control flows. Avalle et al. [14] propose a multi-striding transfor-
mation for NFAs to enable processing of multiple bytes simultane-
ously; however, the transformed NFAs incur a significant increase
in size. ngAP [37, 38] improves the compute utilization by non-
blocking execution, however, its memoization table requires large
memory footprint, limiting scalability. In contrast, BitGen targets
GPU-based multi-pattern matching by leveraging bit-parallelism
and optimizing for resolving dependency and data reuse, enabling
high-throughput execution of large-scale regex workloads.

Bit-Parallel Pattern Matching. Bit-parallel algorithms such as
Shift-And and its variants [15, 86] achieve efficient string matching
via bitwise operations. Recent works extend this idea to general reg-
ular expressions by simulating NFAs with bit-parallelism [39, 48],
often combined with regex-level rewrites for further optimization.
However, these bit-parallel NFA algorithms differ fundamentally
from our approach: they represent active NFA states as bit vectors
and process the input one byte at a time, performing parallel state
transitions using bitwise logic. In contrast, our method operates
directly on bitstreams from input text and matches multiple charac-
ters per step. Building on bitstream representations, Parabix [24, 50]
compiles regular expressions into bitstream programs that process
input in parallel using SIMD-style operations. Qiu et al. [59] further
improve the parallelism of bitstream programs by speculating on
control and data dependencies involving global states. However,
their approach targets CPU execution and does not consider the
high-throughput challenges of executing multiple regex patterns
in parallel on GPUs. In contrast, while Qiu et al. [59] focus on
data dependencies arising from global loop states (e.g., whether
the current iteration is odd or even), our work targets data depen-
dencies across bitstream blocks, which we resolve efficiently using
Dependency-Aware Thread-Data Mapping.

10 Conclusions
We present BitGen, a GPU-targeted code generator that enables
efficient interleaved execution of bitstream programs, a power-
ful abstraction widely used in unstructured data analytics tasks
such as regex matching. We identify key limitations of sequential
block-wise execution on GPUs, including poor data reuse, exces-
sive memory consumption, and redundant computation. To address
these issues, BitGen enables interleaved execution and introduces
GPU-specific optimizations to make it practical and efficient. Ex-
periments on real-world regex workloads show that BitGen signif-
icantly outperforms state-of-the-art GPU and CPU regex engines.

Acknowledgments
We thank the anonymous reviewers for their valuable feed-
back, which significantly improved the quality of this paper, and
Ming Li for proofreading. Tianao Ge and Xiaowen Chu were par-
tially supported by the National Natural Science Foundation of
China under Grant No. 62302416 and the Guangzhou Municipal
Joint Funding Project with Universities and Enterprises under
Grant No. 2024A03J0616. Hongyuan Liu acknowledges the High
Performance Computing Cluster at Stevens Institute of Technology
and the Stevens Institute for Artificial Intelligence for providing part
of the computing resources. Corresponding authors: Hongyuan Liu
and Xiaowen Chu.

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianao Ge, Xiaowen Chu, and Hongyuan Liu

References
[1] 2025. Boost Regex Library. https://github.com/boostorg/regex.
[2] 2025. Clamav net. https://www.clamav.net/.
[3] 2025. HSCompile: MNRL HyperScan. https://github.com/kevinaangstadt/

hscompile.
[4] 2025. NVIDIA Nsight Compute Profiling Tool. https://docs.nvidia.com/nsight-

compute/NsightCompute/.
[5] 2025. RE2. https://github.com/google/re2.
[6] 2025. The User guide for the NVRTC library. https://docs.nvidia.com/cuda/nvrtc/.
[7] 2025. The Zeek Network Security Monitor. https://www.zeek.org.
[8] 2025. YARA: The pattern matching swiss knife for malware researchers. https:

//virustotal.github.io/yara/.
[9] Alfred V. Aho and Margaret J. Corasick. 1975. Efficient string matching: an aid

to bibliographic search. Commun. ACM (1975). https://doi.org/10.1145/360825.
360855

[10] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. 2007. Compilers Principles,
Techniques & Tools. Pearson Education.

[11] Mohammed Alser, Julien Eudine, and Onur Mutlu. 2025. Taming Large-scale
Genomic Analyses via Sparsified Genomics. Nature Communications 16, 1 (2025),
876. https://doi.org/10.1038/s41467-024-55762-1

[12] Mehmet Altınel and Michael J Franklin. 2000. Efficient Filtering of XML Doc-
uments for Selective Dissemination of Information. In Proceedings of the 26th
International Conference on Very Large Data Bases (VLDB). 53–64.

[13] K. Angstadt, J. Wadden, V. Dang, T. Xie, D. Kramp, W. Weimer, M. Stan, and
K. Skadron. 2018. MNCaRT: An Open-Source, Multi-Architecture Automata-
Processing Research and Execution Ecosystem. IEEE Computer Architecture
Letters (CAL) (2018).

[14] Matteo Avalle, Fulvio Risso, and Riccardo Sisto. 2016. Scalable Algorithms for
NFA Multi-Striding and NFA-Based Deep Packet Inspection on GPUs. IEEE/ACM
Transactions on Networking (ToN) (2016). https://doi.org/10.1109/TNET.2015.
2429918

[15] Ricardo Baeza-Yates and Gaston H. Gonnet. 1992. A New Approach to Text
Searching. Commun. ACM 35, 10 (1992). https://doi.org/10.1145/135239.135243

[16] Efe Barlas, Xin Du, and James C. Davis. 2022. Exploiting Input Sanitization for
Regex Denial of Service. In Proceedings of the 44th International Conference on
Software Engineering (ICSE). https://doi.org/10.1145/3510003.3510047

[17] Michela Becchi and Patrick Crowley. 2007. A Hybrid Finite Automaton for Prac-
tical Deep Packet Inspection. In Proceedings of the 2007 ACM CoNEXT Conference
(CoNEXT).

[18] Michela Becchi and Patrick Crowley. 2008. Extending finite automata to effi-
ciently match Perl-compatible regular expressions. In Proceedings of the 2008
ACM CoNEXT Conference. https://doi.org/10.1145/1544012.1544037

[19] Michela Becchi, Mark Franklin, and Patrick Crowley. 2008. A Workload for Eval-
uating Deep Packet Inspection Architectures. In Proceedings of the International
Symposium on Workload Characterization (IISWC).

[20] Amit Bleiweiss and Nicole Luo. 2024. Mastering LLM Techniques: Data Pre-
processing. https://developer.nvidia.com/blog/mastering-llm-techniques-data-
preprocessing/.

[21] Chunkun Bo, Vinh Dang, Elaheh Sadredini, and Kevin Skadron. 2018. Searching
for Potential gRNA Off-Target Sites for CRISPR/Cas9 Using Automata Processing
Across Different Platforms. In Proceedings of the IEEE International Symposium on
High Performance Computer Architecture (HPCA). https://doi.org/10.1109/HPCA.
2018.00068

[22] Benjamin C. Brodie, David E. Taylor, and Ron K. Cytron. 2006. A Scalable
Architecture For High-Throughput Regular-Expression Pattern Matching. In
Proceedings of the 33rd Annual International Symposium on Computer Architecture
(ISCA). https://doi.org/10.1109/ISCA.2006.7

[23] Damla Senol Cali, Gurpreet S. Kalsi, Zülal Bingöl, Can Firtina, Lavanya Sub-
ramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan
Gomez-Luna, Amirali Boroumand, Anant Norion, Allison Scibisz, Sreenivas
Subramoneyon, Can Alkan, Saugata Ghose, and Onur Mutlu. 2020. GenASM:
A High-Performance, Low-Power Approximate String Matching Acceleration
Framework for Genome Sequence Analysis. In Proceedings of the 53rd An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO). https:
//doi.org/10.1109/MICRO50266.2020.00081

[24] Robert D. Cameron, Thomas C. Shermer, Arrvindh Shriraman, Kenneth S. Herdy,
Dan Lin, Benjamin R. Hull, and Meng Lin. 2014. Bitwise data parallelism in
regular expression matching. In Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation (PACT). 139–150. https://doi.org/10.
1145/2628071.2628079

[25] Filippo Carloni, Davide Conficconi, and Marco D. Santambrogio. 2024. ALVEARE:
a Domain-Specific Framework for Regular Expressions. In Proceedings of the 61st
ACM/IEEE Design Automation Conference (DAC). https://doi.org/10.1145/3649329.
3657378

[26] Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto. 2010.
iNFAnt: NFA Pattern Matching on GPGPU Devices. SIGCOMM Computer Com-
munication Review (CCR) (2010).

[27] Qianxi Chen, Yujiao Deng, Qiang Wu, and Zhixiong Di. 2025. An r-DFA-based
Layout Pattern Match Method Supporting Fuzzy Matching. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (2025). https:
//doi.org/10.1109/TCAD.2025.3556969

[28] Luisa Cicolini, Filippo Carloni, Marco D. Santambrogio, and Davide Conficconi.
2024. One Automaton to Rule Them All: Beyond Multiple Regular Expressions
Execution. In Proceedings of the 2024 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). https://doi.org/10.1109/CGO57630.2024.
10444810

[29] Russ Cox. 2007. Regular Expression Matching Can Be Simple and Fast. https:
//swtch.com/~rsc/regexp/regexp1.html.

[30] Scott A Crosby and Dan S Wallach. 2003. Denial of service via algorithmic com-
plexity attacks. In Proceedings of the 12th USENIX Security Symposium (USENIX
Security).

[31] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold
Noyes. 2014. An Efficient and Scalable Semiconductor Architecture for Parallel
Automata Processing. IEEE Transactions on Parallel and Distributed Systems
(2014).

[32] Johannes Doleschal, Benny Kimelfeld, and Wim Martens. 2021. Database
Principles and Challenges in Text Analysis. SIGMOD Rec. (2021). https:
//doi.org/10.1145/3484622.3484624

[33] Xingran Du, Joel S. Emer, and Daniel Sanchez. 2025. Hopps: Leveraging Sparsity
to Accelerate Automata Processing. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 96–111. https://doi.org/10.1145/3676642.3736126

[34] Yuanwei Fang, Tung T. Hoang, Michela Becchi, and Andrew A. Chien. 2015. Fast
support for unstructured data processing: the unified automata processor. In
Proceedings of the 48th International Symposium on Microarchitecture (MICRO).
https://doi.org/10.1145/2830772.2830809

[35] Yuanwei Fang, Chen Zou, and Andrew A. Chien. 2019. Accelerating raw data
analysis with the ACCORDA software and hardware architecture. Proc. VLDB
Endow. (2019). https://doi.org/10.14778/3342263.3342634

[36] Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and
Domagoj Vrgoč. 2020. Efficient Enumeration Algorithms for Regular Document
Spanners. ACM Trans. Database Syst. (2020). https://doi.org/10.1145/3351451

[37] Tianao Ge, Tong Zhang, and Hongyuan Liu. 2024. ngAP: Non-blocking Large-
scale Automata Processing on GPUs. In Proceedings of the ACM International
Conference on International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). https://doi.org/10.1145/3617232.
3624848

[38] Tianao Ge, Tong Zhang, and Hongyuan Liu. 2025. Towards Scalable and Non-
blocking Automata Processing on GPUs with ngAP. ACM Trans. Comput. Syst.
(2025). https://doi.org/10.1145/3748646

[39] Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras. 2024. HybridSA:
GPU Acceleration of Multi-pattern Regex Matching Using Bit Parallelism. Proc.
ACM Program. Lang. 8, OOPSLA2 (2024), 1699–1728. https://doi.org/10.1145/
3689771

[40] Victor Mikhaylovich Glushkov. 1961. The Abstract Theory of Automata. Russian
Mathematical Surveys 16, 5 (1961), 1.

[41] Vaibhav Gogte, Aasheesh Kolli, Michael J. Cafarella, Loris D’Antoni, and
Thomas F. Wenisch. 2016. HARE: Hardware accelerator for regular expres-
sions. In Proceedings of the 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). https://doi.org/10.1109/MICRO.2016.7783747

[42] Robert Heeg. 2023. Possibilities and limitations, of unstructured data. https://
researchworld.com/articles/possibilities-and-limitations-of-unstructured-data.

[43] W. Daniel Hillis and Guy L. Steele. 1986. Data Parallel Algorithms. Commun.
ACM (Dec. 1986), 1170–1183. https://doi.org/10.1145/7902.7903

[44] Yi Huang, Lingkun Kong, Dibei Chen, Zhiyu Chen, Xiangyu Kong, Jianfeng Zhu,
Konstantinos Mamouras, ShaojunWei, Kaiyuan Yang, and Leibo Liu. 2023. CASA:
An Energy-Efficient and High-Speed CAM-based SMEM Seeding Accelerator
for Genome Alignment. In Proceedings of the 56th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). https://doi.org/10.1145/3613424.
3614313

[45] Theo Jepsen, Daniel Alvarez, Nate Foster, Changhoon Kim, Jeongkeun Lee, Ma-
soud Moshref, and Robert Soulé. 2019. Fast String Searching on PISA. In Pro-
ceedings of the 2019 ACM Symposium on SDN Research. https://doi.org/10.1145/
3314148.3314356

[46] Seongyoung Kang, Jiyoung An, Jinpyo Kim, and Sang-Woo Jun. 2021. MithriLog:
Near-Storage Accelerator for High-Performance Log Analytics. In Proceedings
of the 54th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO).

[47] Lingkun Kong, Qixuan Yu, Agnishom Chattopadhyay, Alexis Le Glaunec, Yi
Huang, Konstantinos Mamouras, and Kaiyuan Yang. 2022. Software-Hardware
Codesign for Efficient in-Memory Regular Pattern Matching. In Proceedings of the
43rd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI).

[48] Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras. 2023. Regular
Expression Matching using Bit Vector Automata. Proc. ACM Program. Lang. 7,

https://github.com/boostorg/regex
https://www.clamav.net/
https://github.com/kevinaangstadt/hscompile
https://github.com/kevinaangstadt/hscompile
https://docs.nvidia.com/nsight-compute/NsightCompute/
https://docs.nvidia.com/nsight-compute/NsightCompute/
https://github.com/google/re2
https://docs.nvidia.com/cuda/nvrtc/
https://www.zeek.org
https://virustotal.github.io/yara/
https://virustotal.github.io/yara/
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1038/s41467-024-55762-1
https://doi.org/10.1109/TNET.2015.2429918
https://doi.org/10.1109/TNET.2015.2429918
https://doi.org/10.1145/135239.135243
https://doi.org/10.1145/3510003.3510047
https://doi.org/10.1145/1544012.1544037
https://developer.nvidia.com/blog/mastering-llm-techniques-data-preprocessing/
https://developer.nvidia.com/blog/mastering-llm-techniques-data-preprocessing/
https://doi.org/10.1109/HPCA.2018.00068
https://doi.org/10.1109/HPCA.2018.00068
https://doi.org/10.1109/ISCA.2006.7
https://doi.org/10.1109/MICRO50266.2020.00081
https://doi.org/10.1109/MICRO50266.2020.00081
https://doi.org/10.1145/2628071.2628079
https://doi.org/10.1145/2628071.2628079
https://doi.org/10.1145/3649329.3657378
https://doi.org/10.1145/3649329.3657378
https://doi.org/10.1109/TCAD.2025.3556969
https://doi.org/10.1109/TCAD.2025.3556969
https://doi.org/10.1109/CGO57630.2024.10444810
https://doi.org/10.1109/CGO57630.2024.10444810
https://swtch.com/~rsc/regexp/regexp1.html
https://swtch.com/~rsc/regexp/regexp1.html
https://doi.org/10.1145/3484622.3484624
https://doi.org/10.1145/3484622.3484624
https://doi.org/10.1145/3676642.3736126
https://doi.org/10.1145/2830772.2830809
https://doi.org/10.14778/3342263.3342634
https://doi.org/10.1145/3351451
https://doi.org/10.1145/3617232.3624848
https://doi.org/10.1145/3617232.3624848
https://doi.org/10.1145/3748646
https://doi.org/10.1145/3689771
https://doi.org/10.1145/3689771
https://doi.org/10.1109/MICRO.2016.7783747
https://researchworld.com/articles/possibilities-and-limitations-of-unstructured-data
https://researchworld.com/articles/possibilities-and-limitations-of-unstructured-data
https://doi.org/10.1145/7902.7903
https://doi.org/10.1145/3613424.3614313
https://doi.org/10.1145/3613424.3614313
https://doi.org/10.1145/3314148.3314356
https://doi.org/10.1145/3314148.3314356

Interleaved Bitstream Execution for Multi-Pattern Regex Matching on GPUs MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

OOPSLA1 (2023). https://doi.org/10.1145/3586044
[49] Yinan Li, Nikos R. Katsipoulakis, Badrish Chandramouli, Jonathan Goldstein,

and Donald Kossmann. 2017. Mison: A Fast JSON Parser for Data Analytics.
Proceedings of the VLDB Endowment (VLDB) 10, 10 (2017), 1118–1129. https:
//doi.org/10.14778/3115404.3115416

[50] Dan Lin, Nigel Medforth, Kenneth S. Herdy, Arrvindh Shriraman, and Robert D.
Cameron. 2012. Parabix: Boosting the efficiency of text processing on commodity
processors. In Proceedings of the 18th IEEE International Symposium on High
Performance Computer Architecture (HPCA). 373–384. https://doi.org/10.1109/
HPCA.2012.6169041

[51] Hongyuan Liu, Mohamed Ibrahim, Onur Kayiran, Sreepathi Pai, and Adwait Jog.
2018. Architectural Support for Efficient Large-Scale Automata Processing. In
Proceedings of the International Symposium on Microarchitecture (MICRO).

[52] Hongyuan Liu, Sreepathi Pai, and Adwait Jog. 2020. Why GPUs are Slow at
Executing NFAs and How to Make them Faster. In Proceedings of the ACM In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 251–265. https://doi.org/10.1145/3373376.3378471

[53] Hongyuan Liu, Sreepathi Pai, and Adwait Jog. 2023. Asynchronous Automata
Processing on GPUs. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 7, 1 (2023). https://doi.org/10.1145/3579453

[54] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. 2014. Data-parallel
Finite-state Machines. In Proceedings of the International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS).

[55] Marziyeh Nourian, Xiang Wang, Xiaodong Yu, Wu-chun Feng, and Michela
Becchi. 2017. Demystifying automata processing: GPUs, FPGAs or Micron’s AP?.
In Proceedings of the International Conference on Supercomputing (ICS). https:
//doi.org/10.1145/3079079.3079100

[56] Taejune Park, Jaehyun Nam, Seung Ho Na, Jaewoong Chung, and Seungwon Shin.
2021. Reinhardt: Real-time Reconfigurable Hardware Architecture for Regular
Expression Matching in DPI. In Proceedings of the 37th Annual Computer Security
Applications Conference (ACSAC). https://doi.org/10.1145/3485832.3485878

[57] Daniele Parravicini, Davide Conficconi, Emanuele Del Sozzo, Christian Pilato,
and Marco D. Santambrogio. 2021. CICERO: A Domain-Specific Architecture for
Efficient Regular Expression Matching. ACM Trans. Embed. Comput. Syst. (2021).
https://doi.org/10.1145/3476982

[58] Junqiao Qiu and Ali Ebnenasir. 2023. Exploring Scalable Parallelization for Edit
Distance-Based Motif Search. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (2023). https://doi.org/10.1109/TCBB.2022.3208867

[59] Junqiao Qiu, Lin Jiang, and Zhijia Zhao. 2020. Challenging Sequential Bitstream
Processing via Principled Bitwise Speculation. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). https://doi.org/10.1145/3373376.3378461

[60] Junqiao Qiu, Xiaofan Sun, Amir Hossein Nodehi Sabet, and Zhijia Zhao. 2021.
Scalable FSM Parallelization via Path Fusion and Higher-Order Speculation. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[61] Kun Qiu, Harry Chang, Yang Hong, Wenjun Zhu, Xiang Wang, and Baoqian Li.
2021. Teddy: An Efficient SIMD-based Literal Matching Engine for Scalable Deep
Packet Inspection. In Proceedings of the 50th International Conference on Parallel
Processing (ICPP). https://doi.org/10.1145/3472456.3473512

[62] Cristian Riveros, Nicolás Van Sint Jan, and Domagoj Vrgoč. 2023. REmatch:
A Novel Regex Engine for Finding All Matches. Proc. VLDB Endow. (2023).
https://doi.org/10.14778/3611479.3611488

[63] Matt Robinson. 2025. Preprocessing Unstructured Data for LLM Applica-
tions. https://www.deeplearning.ai/short-courses/preprocessing-unstructured-
data-for-llm-applications/.

[64] Martin Roesch. 1999. Snort - Lightweight Intrusion Detection for Networks. In
Proceedings of the USENIX Conference on System Administration (LISA).

[65] Indranil Roy and Srinivas Aluru. 2016. DiscoveringMotifs in Biological Sequences
Using the Micron Automata Processor. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 13, 1 (2016), 99–111. https://doi.org/10.1109/TCBB.
2015.2430313

[66] Elaheh Sadredini, Reza Rahimi, Marzieh Lenjani, Mircea Stan, and Kevin Skadron.
2020. FlexAmata: A Universal and Efficient Adaption of Applications to Spatial
Automata Processing Accelerators. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). https://doi.org/10.1145/3373376.3378459

[67] Elaheh Sadredini, Reza Rahimi, Marzieh Lenjani, Mircea Stan, and Kevin Skadron.
2020. Impala: Algorithm/Architecture Co-Design for In-Memory Multi-Stride
Pattern Matching. In Proceedings of the IEEE International Symposium on High
Performance Computer Architecture (HPCA). https://doi.org/10.1109/HPCA47549.
2020.00017

[68] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin Skadron.
2019. eAP: A Scalable and Efficient in Memory Accelerator for Automata Process-
ing. In Proceedings of the International Symposium on Microarchitecture (MICRO).

[69] Reetinder Sidhu and Viktor K Prasanna. 2001. Fast Regular Expression Match-
ing Using FPGAs. In Proceedings of the 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 227–238.

[70] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. 2017. Accelerat-
ing Pattern Matching Queries in Hybrid CPU-FPGA Architectures. In Proceedings
of the 2017 ACM International Conference on Management of Data (SIGMOD).
403–415.

[71] Andrea Somaini, Filippo Carloni, Giovanni Agosta, Marco D. Santambrogio,
and Davide Conficconi. 2025. Combining MLIR Dialects with Domain-Specific
Architecture for Efficient Regular Expression Matching. In Proceedings of the 23rd
ACM/IEEE International Symposium on Code Generation and Optimization (CGO).
255–270. https://doi.org/10.1145/3696443.3708916

[72] Arun Subramaniyan and Reetuparna Das. 2017. Parallel Automata Processor. In
Proceedings of the 44th Annual International Symposium on Computer Architecture
(ISCA). https://doi.org/10.1145/3079856.3080207

[73] Arun Subramaniyan, Jingcheng Wang, Ezhil R. M. Balasubramanian, David
Blaauw, Dennis Sylvester, and Reetuparna Das. 2017. Cache Automaton. In
Proceedings of the International Symposium on Microarchitecture (MICRO).

[74] Prateek Tandon, Faissal M. Sleiman, Michael J. Cafarella, and Thomas F. Wenisch.
2016. HAWK: Hardware Support for Unstructured Log Processing. In Proceedings
of the IEEE 32nd International Conference on Data Engineering (ICDE). 469–480.
https://doi.org/10.1109/ICDE.2016.7498263

[75] Ken Thompson. 1968. Programming Techniques: Regular expression search
algorithm. Commun. ACM (1968). https://doi.org/10.1145/363347.363387

[76] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P.
Markatos, and Sotiris Ioannidis. 2008. Gnort: High Performance Network In-
trusion Detection Using Graphics Processors. In Proceedings of the International
Symposium on Recent Advances in Intrusion Detection (RAID).

[77] Giorgos Vasiliadis, Michalis Polychronakis, Spiros Antonatos, Evangelos P
Markatos, and Sotiris Ioannidis. 2009. Regular Expression Matching on Graphics
Hardware for Intrusion Detection. In Proceedings of the International Symposium
on Recent Advances in Intrusion Detection (RAID).

[78] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. 2011. Paral-
lelization and characterization of pattern matching using GPUs. In Proceedings
of the International Symposium on Workload Characterization (IISWC).

[79] Jack Wadden, Kevin Angstadt, and Kevin Skadron. 2018. Characterizing and
Mitigating Output Reporting Bottlenecks in Spatial Automata Processing Ar-
chitectures. In Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA).

[80] JackWadden, Vinh Dang, Nathan Brunelle, Tommy Tracy II, Deyuan Guo, Elaheh
Sadredini, KeWang, Chunkun Bo, Gabriel Robins,Mircea Stan, and Kevin Skadron.
2016. ANMLzoo: a benchmark suite for exploring bottlenecks in automata
processing engines and architectures. In 2016 IEEE International Symposium on
Workload Characterization, IISWC 2016, Providence, RI, USA, September 25-27, 2016.
IEEE Computer Society, 105–166. https://doi.org/10.1109/IISWC.2016.7581271

[81] Jack Wadden and Kevin Skadron. 2016. VASim: An Open Virtual Automata Simu-
lator for Automata Processing Application and Architecture Research. Technical
Report CS2016-03. University of Virginia.

[82] Jack Wadden, Tom Tracy II, Elaheh Sadredini, Lingzi Wu, Chunkun Bo, Jesse Du,
YizhouWei, MatthewWallace, Jeffrey Udall, Mircea Stan, and Kevin Skadron. 2018.
AutomataZoo: A Modern Automata Processing Benchmark Suite. In Proceedings
of the International Symposium on Workload Characterization (IISWC).

[83] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu
Hu, and Heqing Zhu. 2019. Hyperscan: A Fast Multi-pattern Regex Matcher for
Modern CPUs. In Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI). https://doi.org/10.5555/3323234.3323286

[84] Bruce William Watson. 1993. A taxonomy of finite automata construction algo-
rithms. (1993).

[85] Ziyuan Wen, Lingkun Kong, Alexis Le Glaunec, Konstantinos Mamouras, and
Kaiyuan Yang. 2024. BVAP: Energy and Memory Efficient Automata Processing
for Regular Expressions with Bounded Repetitions. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). https://doi.org/10.1145/3620665.3640412

[86] Sun Wu and Udi Manber. 1992. Fast Text Searching: Allowing Errors. Commun.
ACM (1992). https://doi.org/10.1145/135239.135244

[87] Yang Xia, Peng Jiang, and Gagan Agrawal. 2020. Scaling Out Speculative Execu-
tion of Finite-state Machines with Parallel Merge. In Proceedings of the 25th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP).
https://doi.org/10.1145/3332466.3374524

[88] Chengcheng Xu, Shuhui Chen, Jinshu Su, S. M. Yiu, and Lucas C. K. Hui. 2016. A
Survey on Regular ExpressionMatching for Deep Packet Inspection: Applications,
Algorithms, and Hardware Platforms. IEEE Communications Surveys & Tutorials
(2016). https://doi.org/10.1109/COMST.2016.2566669

[89] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and RandyH. Katz. 2006. Fast
and memory-efficient regular expression matching for deep packet inspection.
In Proceedings of the 2006 ACM/IEEE Symposium on Architecture for Networking
and Communications Systems (ANCS). https://doi.org/10.1145/1185347.1185360

[90] Xiaodong Yu and Michela Becchi. 2013. GPU Acceleration of Regular Expression
Matching for Large Datasets: Exploring the Implementation Space. In Proceedings
of the ACM International Conference on Computing Frontiers (CF). https://doi.org/
10.1145/2482767.2482791

https://doi.org/10.1145/3586044
https://doi.org/10.14778/3115404.3115416
https://doi.org/10.14778/3115404.3115416
https://doi.org/10.1109/HPCA.2012.6169041
https://doi.org/10.1109/HPCA.2012.6169041
https://doi.org/10.1145/3373376.3378471
https://doi.org/10.1145/3579453
https://doi.org/10.1145/3079079.3079100
https://doi.org/10.1145/3079079.3079100
https://doi.org/10.1145/3485832.3485878
https://doi.org/10.1145/3476982
https://doi.org/10.1109/TCBB.2022.3208867
https://doi.org/10.1145/3373376.3378461
https://doi.org/10.1145/3472456.3473512
https://doi.org/10.14778/3611479.3611488
https://www.deeplearning.ai/short-courses/preprocessing-unstructured-data-for-llm-applications/
https://www.deeplearning.ai/short-courses/preprocessing-unstructured-data-for-llm-applications/
https://doi.org/10.1109/TCBB.2015.2430313
https://doi.org/10.1109/TCBB.2015.2430313
https://doi.org/10.1145/3373376.3378459
https://doi.org/10.1109/HPCA47549.2020.00017
https://doi.org/10.1109/HPCA47549.2020.00017
https://doi.org/10.1145/3696443.3708916
https://doi.org/10.1145/3079856.3080207
https://doi.org/10.1109/ICDE.2016.7498263
https://doi.org/10.1145/363347.363387
https://doi.org/10.1109/IISWC.2016.7581271
https://doi.org/10.5555/3323234.3323286
https://doi.org/10.1145/3620665.3640412
https://doi.org/10.1145/135239.135244
https://doi.org/10.1145/3332466.3374524
https://doi.org/10.1109/COMST.2016.2566669
https://doi.org/10.1145/1185347.1185360
https://doi.org/10.1145/2482767.2482791
https://doi.org/10.1145/2482767.2482791

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Tianao Ge, Xiaowen Chu, and Hongyuan Liu

[91] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, and Justine
Sherry. 2020. Achieving 100Gbps Intrusion Prevention on a Single Server. In
Proceedings of the 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

[92] Zhijia Zhao and Xipeng Shen. 2015. On-the-Fly Principled Speculation for FSM
Parallelization. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[93] Zhijia Zhao, Bo Wu, and Xipeng Shen. 2014. Challenging the “Embarrassingly
Sequential": Parallelizing Finite State Machine-based Computations Through
Principled Speculation. In Proceedings of the International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS).

[94] Youwei Zhuo, Jinglei Cheng, Qinyi Luo, Jidong Zhai, Yanzhi Wang, Zhongzhi
Luan, and Xuehai Qian. 2018. CSE: Parallel Finite State Machines with Con-
vergence Set Enumeration. In Proceedings of the International Symposium on
Microarchitecture (MICRO). https://doi.org/10.1109/MICRO.2018.00012

[95] Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang Peng, and
Qunfeng Dong. 2012. GPU-based NFA Implementation for Memory Efficient
High Speed Regular Expression Matching. In Proceedings of the Symposium on
Principles and Practice of Parallel Programming (PPoPP). https://doi.org/10.1145/
2370036.2145833

A Artifact Appendix
A.1 Abstract
This artifact includes the source code of BitGen along with other
baselines. We provide instructions and scripts to build the codebase
and reproduce the experimental results presented in Figure 11,
Table 2 and Figure 12 of the paper.

A.2 Artifact check-list (meta-information)
● Algorithm: BitGen, ngAP [37], icgrep [24], Hyperscan [83]● Program: Python, CUDA C++● Compilation: NVCC 12.4, NVRTC, GCC 13, CMake 3.24.1● Binary: Shared libraries and CUDA binaries● Run-time environment: Ubuntu 20.04 with CUDA 12.4● Hardware: x86_64 CPU with host memory larger than 32 GB.

CUDA-enabled GPU with device memory larger than 24 GB.● Metrics: Achieved throughput (bytes per second)● Output: CSV files and running logs● How much disk space required (approximately)?: 60 GiB● How much time is needed to prepare workflow (approxi-
mately)?: 1 hour● How much time is needed to complete experiments (approxi-
mately)?: 6 hours● Publicly available?: Yes● Code licenses (if publicly available)?: Apache 2.0● Archived (provide DOI)?: 10.5281/zenodo.16664499

A.3 Description
A.3.1 How to access. The artifact is archived on Zenodo and made
available on GitHub for any future updates or revisions.

https://github.com/getianao/BitGen
https://doi.org/10.5281/zenodo.16664499

A.3.2 Hardware dependencies. BitGen is expected to run on
NVIDIA GPUs with a compute capability of no less than 8.6.

A.3.3 Software dependencies. All experiments are conducted under
Ubuntu 20.04. The artifact requires the NVIDIA CUDA driver of
version 550.54.15 or later, and CUDA Toolkit version 12.4.1. The
artifact was tested using Python 3.10 and GCC 13. ngAP relies on
TBB 2020.1 and CMake 3.24. Hyperscan relies on GCC 5.3, Boost,
Ragel, and NASM.

A.3.4 Datasets. All datasets are from publicly available benchmark
suites: AutomataZoo [82], ANMLZoo [80], and Regex [19]. We
converted their regular expressions into ANML format [80] using
MNCaRT [13] and VASim [81], and into bitstream programs using
icgrep. The preprocessed datasets are included in our repository.

A.4 Installation
We recommend setting up the environment using Docker. Follow
the steps below to install the BitGen artifact:

$ git clone --recursive \
https://github.com/getianao/BitGen.git

$ cd ngAP && source env.sh
$./1_download_benchmark.sh
$./2_build_docker.sh
$./3_launch_docker.sh

Within the Docker container, execute the following command:

$./4_build_all.sh

This script generates the executables and packages for BitGen,
ngAP, icgrep, andHyperscan. For each scheme, we provide a Python
wrapper under the scripts directory. Users can view the usage
instructions by passing the -h flag.

A.5 Experiment workflow
To reproduce the experiments in this artifact, execute:

$./5_run_all.sh

The full experiment suite typically takes around 6 hours to com-
plete. All resulting CSV files will be saved in the results/csv
directory, and log files will be stored in the log directory.

A.6 Evaluation and expected results
To generate the figures and tables (Figure 11, Table 2 and Figure 12)
from the data in the results/csv folder, run:

$./6_plot_all.sh

The generated figures and tables will be stored in the results
folder. For your reference, we have included results collected on
an NVIDIA RTX 3090 and an Intel Xeon 4214R, as well as the
corresponding figures and tables, in the results_ref folder.

A.7 Experiment customization
Users are encouraged to conduct experiments with various param-
eters or additional applications by modifying the configuration
file (under configs) or specifying the options manually. For more
details, please refer to README.md.

A.8 Methodology
Submission, reviewing and badging methodology:● https://www.acm.org/publications/policies/artifact-review-

and-badging-current● https://cTuning.org/ae

https://doi.org/10.1109/MICRO.2018.00012
https://doi.org/10.1145/2370036.2145833
https://doi.org/10.1145/2370036.2145833
https://github.com/getianao/BitGen
https://doi.org/10.5281/zenodo.16664499
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

	Abstract
	1 Introduction
	2 Background
	3 BitGen: Generating Efficient GPU Kernels for Bitstream Programs
	3.1 Overview of BitGen
	3.2 Sequential Block-wise Execution
	3.3 Key Insight: Interleaved Execution

	4 Enabling Interleaved Execution via Dependency-Aware Thread-Data Mapping
	4.1 Challenges of Interleaved Execution
	4.2 Dependency-Aware Thread-Data Mapping

	5 Reducing Synchronization Overhead via Shift Rebalancing
	5.1 Source of Synchronization
	5.2 Rebalancing Dependency Chains
	5.3 Merging Barriers of Shift Instructions

	6 Reducing Redundant Computation through Zero Block Skipping
	7 Evaluation Methodology
	8 Experimental Results
	8.1 Overall Performance
	8.2 Optimization Analysis
	8.3 Portability Studies

	9 Related Work
	10 Conclusions
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Methodology

