
RAISE: Efficient GPU Resource Management via
Hybrid Scheduling

Yue Weng, Tianao Ge, Xi Zhang, Xianwei Zhang, Yutong Lu
School of Computer Science and Engineering

Sun Yat-sen University
Guangzhou, China

Email: {wengy8, getao3}@mail2.sysu.edu.cn, {zhangx299, zhangxw79, luyutong}@mail.sysu.edu.cn

Abstract— As the de facto high-throughput accelerators,
graphics processing units (GPUs) are now used in a wide spec-
trum of fields, including artificial intelligence, high performance
computing and finance. While with excessive computing and
memory resources, GPUs are facing significant challenges to
reach high utilization by a monolithic task. Multiple tasks are
thus concurrently running to share the GPUs, but they may
adversely affect each other, causing performance degradation.
As a result, it is extremely critical to manage resources in
a reasonable way to strike a balance between utilization and
performance. Targeting the issue, this paper proposes an effective
resource management design via hybrid task scheduling. Our
design continuously tracks the GPU executions and collects the
usage statistics, which are then used to direct the task selection
and dispatch, including the type, starting time and kernel
dimensions. A prototype is developed on off-the-shelf GPUs by
moderately refactoring the CUDA source codes. Experimental
results show that the design can achieve up to 1.96x performance
improvement (1.51x on average), meanwhile effectively boosting
resource utilization.

Index Terms—Resource management, GPU, Scheduling

I. INTRODUCTION

Graphics processing units (GPUs) are widely deployed in
today’s cloud computing centers and supercomputers to meet
the increasing demands of modern applications [1], [2]. Repre-
sentatively, in the November 2021 supercomputer Top500 list,
there were 152 machines equipped with GPU or some form
of accelerators [3]. With the continuous boost of accelerator
computing capability, this proportion has maintained a strong
growth momentum in the past 15 years [4]. Accordingly, CPU-
GPU heterogeneous systems have received wide attention and
become prevalent in cluster environments. By offering massive
parallelism and high energy efficiency, GPUs are inherently
suitable for various high computing demand scenarios like
machine learning, finance, and high-performance computing
(HPC). GPUs not only offer the main computing power in
the clusters but also have superior power efficiency in terms
of Flops-per-Watt compared with CPUs [5], [6]. Popular
GPU solutions are NVIDIA Ampere 100 [7], AMD Instinct
MI200 [8], Intel Iris Xe Graphics [9] and so on, all featuring
hundreds of computing units that process thousands of data
items in parallel.

Although providing great potential to reach incredible high
performance with rich computation and memory resources,
GPUs are frequently suffering from severe underutilization,

which further damages the energy efficiency ratio of clus-
ters [10], [11]. The issue arises from the fact that GPUs
require a large number of threads to be present to deliver high
throughput. However, for many applications, there might be a
virtually insufficient amount of data parallelism to fully utilize
the GPU horsepower [12]. Targeting the issue, contemporary
GPUs contain task queues, e.g., streams [13] or command
queues [14], to enable concurrent executions, which can then
be exploited by users to batch jobs together. Multiple task
queues can be allocated to manage a bunch of kernels, so that
independent ones can be simultaneously executed whenever
resources are available. In detail, kernels from the same queue
are serially executed to guarantee inter-kernel dependencies,
but those from different queues can be asynchronously exe-
cuted by the GPUs, which typically pick up kernels within
these queues in a round-robin fashion [15]. Further, at the
application level, programmers are allowed to slightly specify
the queue priorities [13], [16], which are then statically used
by GPU drivers and schedulers. While promising to better
utilize GPU components, the concurrency support is operating
at a high level and thus agnostic to the underlying resource
availability, which may experience severe interference and
cause performance degradation [17], [18].

To address the potential issues, a resource-aware sched-
uler is needed to dispatch non-competitive jobs and adjust
task sizes depending on the available resources. Technically,
this can be achieved by adding extra fine-grained hardware
counters inside GPUs to monitor the resource usages, and
forwarding statistics to drivers, which are further required to
be augmented to flexibly shuffle the task execution orders.
However, this can be extremely challenging due to the hurdles
of engineering efforts involved to add hardware support and
commonly proprietary driver implementations. Furthermore,
it is costly and impractical to replace existing cluster devices
extensively to obtain new hardware features. As such, it is
desirable to enable the enhanced scheduler on the off-the-
shelf GPUs, with information only from the application source
codes and existing profiling metrics. Ultimately optimizing
multitasking concurrently on a GPU is critical to the clusters,
considering that the resource utilization of a single node has
a positive correlation to the overall utilization of the clusters.

In this paper, we propose RAISE, a practical task scheduler
to provide efficient GPU resource management via hybrid



scheduling. The contributions of this paper are:
• We identify the GPU usage issues of single-task running

and uncontrolled task co-execution, and then propose to
strengthen the task scheduler to be aware of resource
availability.

• Our proposed design allows GPUs to cluster resource-
complementary tasks on the basis of tracked resource
usages. Even further, the kernel dimensions can be ad-
justed according to the task types and dynamic resource
situations.

• The design can be lightly implemented on off-the-shelf
GPUs, with moderate changes on source code and slight
effort on profiling, making it feasible to be adopted
in practice. Experimental results demonstrate that our
proposed design can greatly improve task performance
as well as raise resource utilization.

The rest of the paper is organized as follows. Related
work is discussed in Section II. Section III introduces GPU
backgrounds. Sections IV and V elaborate on the motivation
and design, respectively. Section VI presents the experimental
methodology and result analysis. The paper is concluded in
Section VII.

II. RELATED WORK

As GPUs play an increasingly significant role in clusters,
public cloud and supercomputers, GPU resource management
is of critical importance and has attracted a lot of attention.
In view of software management, Kato et al. designed a new
runtime driver Gdev [19] to use GPUs as first-class computing
resources for users. However, it still requires experienced
developers to handle the resource management in each logical
GPU. As to kernel execution, Jiao et al. [20] worked to find
the optimal kernel function execution pair to achieve lower
performance loss in exchange for resource utilization improve-
ment. Kernel slicing is used to accomplish concurrency, which
needs to manually split a large kernel into smaller kernels
with fewer threads. Pai et al. [21] proposed elastic-kernel
aware concurrency policies that obtained better concurrency.
To match the mapping scheme, programmers need to change
the loopings over the original kernel code and replace any
variables corresponding to physical dimensions. These designs
inevitably require burdensome code adjustments, which are
especially challenging when porting to new platforms. Our
method can be employed expediently with lightweight API
replacements.

As the foremost resource units of GPU, streaming multipro-
cessors (SMs) contain abundant computing cores and memory
resources such as register files and shared memory [7]. The
partition of SMs has been studied extensively [22], [23] for the
purpose of running multi-tasking on a single GPU. To reduce
the search space, Zhao et al. [24] dynamically allocated SMs
to the workload based on the characteristics of the task, which
will bring profiling overhead for determining SMs partitioning
strategy in each execution. Xu et al. [25] proposed Warp-
Slicer to partition GPU resources among different applications
with a short online profile and intra-SM slicing strategy.

Sampling the program characteristics is essential to locate the
sweet point of the concurrency, which needs longer execution
time and more memory resources. For preemptive scheduling,
SM draining and context switch are two common design
schemes [26], [27]. As the design intention for GPU is chasing
high throughput, context switch is supported inadequately
and needs to be avoided as possible. While preemption is
a guaranteed solution to meet Quality-of-Service [28]–[30],
the context saving brought about by preemption is still a
challenging problem. Spatial multitasking is an alternative way
to share the resource that allows multiple tasks sharing a
GPU at the same time to avoid context switching. Aguilera et
al. [22] presented a runtime algorithm to predict and adjust the
SM allocation while balancing the performance and fairness.
Besides, simultaneous multitasking exploits the thread block
and warp dispatch mechanism to realize resource sharing
among different tasks [23]. Adriaens et al. [31] evaluated
several heuristics for partitioning SM and demonstrated the
superiority of spatial multitasking compared with cooperative
multitasking. The implements of these tasks require additional
hardware resources (such as registers and memory) or more
fine-grained control of the hardware unit (such as SM and warp
scheduler), so the simulator is indispensable to customize the
hardware modification. Nevertheless, these modification are
challenging to be incorporated or applied with practical GPUs.
Differently, our work is solely based on off-the-shelf GPUs
and involves moderate changes of source codes, that will be
more applicable to the production environment.

III. BACKGROUND

A. GPU Organization

Fig. 1 shows the high-level organization of a general GPU
based on NVIDIA design1. The composition of a GPU in-
cludes SMs, cache, constant memory and global memory. As
the basic unit of computation, each SM contains multiple
compute cores such as INT32, FP32, FP64 and tensor to meet
different computational accuracy requirements. In terms of the
memory hierarchy, an SM contains a private L0 cache and L1
cache for instructions and data respectively. Shared memory
enables cooperation between threads and reduces frequent data
access from global memory.

With the help of parallel programming models such as
CUDA [32], HIP [33], and OpenCL [34], computing modules
can be defined as kernel functions to be offloaded onto GPUs.
Kernels that consist of large amounts of threads are organized
into a grid of thread blocks. Taking CUDA as an example, 32
threads in a block are further grouped into a warp, which is the
basic unit for scheduling and execution on SMs by the warp
scheduler and dispatch unit. Threads within a warp follow the
SIMT (single instruction, multiple threads) execution model.
An SM can hold tens of warps at most under the limitations
of hardware resources.

1Other GPU vendors such as AMD adopt similar designs, but with partially
different terminologies.



Device

SM

Constant Memory

SM …

L0 Instruction Cache

Warp Scheduler

Dispatch Unit

Register File

L1 Data Cache / Shared Memory

INT32 FP64

Tensor 
Core… …

L2 Cache

Global Memory

SM SM SM

SM …SM SM SM

INT32 FP64

INT32 FP64

FP32

…

FP32

FP32

Fig. 1. General purpose graphics processing unit (GPGPU) high-level
organization.

B. GPU Multi-tasking

In view of the fact that multitask concurrency may effec-
tively boost utilization [23], GPU manufacturers have pro-
posed a variety of solutions. As a common choice, stream
[35] is a sequence of operations that execute in issue order on
the GPU. Using multiple streams, kernel execution and data
copy between CPU and GPU can thus be overlapped. Since
Fermi architecture, Hyper-Q [36] is used to make multiple
CPU processes or threads work on the same GPU instanta-
neously. Furthermore, by utilizing Hyper-Q capabilities, Multi-
Process Service (MPS) [37], a binary-compatible implementa-
tion of CUDA, is developed to support co-operative multiple
process applications, typically MPI jobs. In MPS, the client-
server model is adopted and the client runtime built into
the CUDA driver is transparently used by applications. Volta
MPS clients submit work directly to the GPU without passing
through the MPS server. In the latest Ampere architecture,
Multi-Instance GPU (MIG) [38] feature allows a GPU to be
physically partitioned into up to seven separate GPU Instances
for CUDA applications.

While with effective supports of GPU sharing and parti-
tioning, the aforementioned designs are still limited in raising
resource utilization. For example, each fine-grained MIG in-
stance still needs to take care of resource management. To
this end, our proposed RAISE is seeking to improve resource
usages, and it is orthogonal to the existing multi-tasking
techniques and cluster scheduling methods.

IV. MOTIVATION

With the continuous expansion of GPU hardware resources,
efficient utilization has become an essential goal. Using GPU
typically encounters two questions: 1) Can a single task make
full use of GPU resources? 2) If not, what scheduling method
should be adopted to enhance the usage? Around these two
issues, we do the following studies, which inspire us to design
a hybrid scheduling mechanism.

A. Resource Idleness of Exclusive Task Execution

To investigate the utilization on different GPU components,
we run Breadth-First Search (BFS) from Rodinia bench-
mark [39] exclusively on the NVIDIA Tesla Volta 100 and

collect some metrics via nvprof [40] . The abbreviations of
the profiling metrics are described in Tab. II (see section V).
Then we normalize the results to the theoretical peak values,
as shown in Fig. 2.

We find that the exclusive execution of BFS consumes the
GPU resources deficiently. The AOC (achieved occupancy)
is only 6.1% of peak value, and the IPC (ipc) only reaches
2.2%. The SPU (single precision fu utilization) and
DU (dram utilization) are both low, which are associated
with the execution of computing instructions and memory
load/store utilization respectively. Most of the metrics have
an enormous gap to the peak values.

6.10% 9.10%
2.20%

22%
10% 10%

3% 1.40%
10% 10%

0%

20%

40%

60%

80%

100%

AOC EWPC IPC ISU SPU DU DRT DWT LSU TU

N
or
m
al
iz
ed
va
lu
e

Metrics

Fig. 2. Profiling results of Breadth-First Search (BFS). All the pro-
filing results are normalized to the peak values. The greater value is,
the higher utilization rate will be. These metrics including: 1) AOC:
achieved occupancy; 2) EWPC: eligible warps per cycle; 3) IPC: ipc;
4) ISU : issue slot utilization; 5) SPU : single precision fu utilization;
6) DU : dram utilization; 7) DRT : dram read throughput; 8) DWT :
dram write throughput; 9) LSU : ldst fu utilization; 10) TU : tex utilization.
Detailed metrics description can be seen in Tab. II.

TABLE I
BFS INSTRUCTION STALLS REASON BREAKDOWN.

Stall reason Ratio Stall reason Ratio
memory dependency 80.69% inst fetch 2.88%

exec dependency 14.97% memory throttle 0.64%
not selected 0.02% pipe busy 0.009%

constant memory
dependency 0.61% other 0.181%

In Tab. I, we list the instruction stall reasons. It can be found
that more than 80% (memory dependency) of the stalls are
attributed to the data retrieval from memory. And, 14.97%
(exec dependency) stalling is occurring because the input
required by the instruction is not yet available. As BFS is
a latency-sensitive task, most of the computing and memory
resources are idle during execution, resulting in serious re-
source waste. This phenomenon is expected to become more
prominent as GPU on-chip resources continue expanding.

B. Utilization Improvement via Hybrid Task Execution

Given that BFS alone cannot fully use the GPU, multi-
tasking sharing GPU becomes the preferred option for im-
proving resource utilization. For the illustration purpose, we
select two tasks matrix multiplication (MM) and hotspot (HS)
from [39], [41] respectively, which are both compute-bound.
Then, we run BFS and MM concurrently using CUDA stream,



0

0.5

1

1.5

BFS+MM
(separate)

BFS+MM
(joint)

MM+HS
(separate)

MM+HS
(joint)

Sp
ee
du
p

BFS MM BFS+MM HS MM+HS

1

1.3

1 0.96

Fig. 3. Comparison of the different running combinations of BFS, MM and
HS, where ’separate’ means the applications run exclusively, and ’joint’ means
the applications run concurrently with the help of CUDA stream. The speedups
are normalized to the ’separate’ setting.

and recollect the performance values. Compared with the sep-
aration execution, we find that the joint execution brings a 1.3x
speedup as shown in Fig. 3. This is because BFS is a latency-
bound task (IPC = 0.31/4.0(max), DU = 1.0/10.0(max)).
The primary instruction stall reason is due to memory access
latency (memory dependency = 80.69%, as shown in Tab. I)
and the computing units are idling for most of the time.
Differently, MM is a compute-bound task (IPC = 2.27/4.0)
and thus mainly occupies computing units. Therefore, when
MM and BFS are executed concurrently, higher resource
utilization can be achieved.

Further, we run MM and HS concurrently, but obtain
worse performance compared to separation. As HS is also a
compute-bound task (IPC = 3.11/4.0), the reason for this
negative result can be blamed on the repetitive type of tasks
and computational resource competition, which worsens the
execution performance.

These experiments indicate that not all co-executions have
satisfactory harvests. More attention should be paid to the co-
executing strategy, as well as fine-grained control measures to
balance resource utilization and efficiency

V. DESIGN

A. Application Characterization

Application characteristics are of critical importance to
direct resource usage optimization. We use profile tool to
capture the execution statistics and select several representative
metrics for analysis.

We take IPC and DRAM utilization (DU ) as the pri-
mary metrics to distinguish computational and memory tasks.
Tasks consume more computing resources (i.e., higher IPC
and single-precision floating-point units SPU ), while using
limited memory resources will be classified as compute-
bound (COM). On the contrary, tasks restricted to memory
access will be classified as memory-bound (MEM) based
on DU . The latency-bound (LAT) tasks use less computing
and memory resources and are limited by instruction fetching,
memory access, or insufficient computing units, resulting
in low utilization of overall resources. These understanding

and division of task execution characteristics will serve the
resource management and scheduling.

B. GPU Resource Management

Collection of GPU resource utilization. Since there are
few APIs and complex closed-source GPU drivers, we could
obtain limited information in user space [32], [33]. We seek
to obtain GPU resource statistics with moderate efforts and
overheads. As the profiling result represents the characteristics
and resource usage during task execution, we can dynamically
collect the GPU resource statistics by leveraging profiling in-
formation and tracking task status. Moreover, profiling results
can be obtained in advance through profile tools [40], which
are beneficial to make faster and more accurate decisions. As
to the online scenarios, the profiling results can be collected
by the transitory online profiling with limited overhead.

We set up a global resource vector M i
g (i ∈ [1, N ]) corre-

sponding to the metrics in Tab. II. These metrics can depict the
behaviors of computing and memory access reliably and are
distinguishable among different tasks. Detailed descriptions of
these metrics can be found in [40]. They can also be used
to indirectly infer the GPU global resource capacity. When
there is no task running, the values of these resources are
maximized (i.e., 10, all values are scaled to 0-10). When a
task t is selected and dispatched, it consumes a certain amount
of resources vector mi

t (i ∈ [1, N ]), which are gained from
the profiling results of the exclusive run. For each task t, we
scale the profiled performance data mi

t to a range of 0-10.
The collection of different utilization helps us understand the
current usage of various GPU resources and further provides
valuable guidance for hybrid scheduling.

Dynamic kernel dimension. In order to fully use the
fragmented resources and improve the overall resource uti-
lization of the GPU, we dynamically adjust the dimensions
of the kernel functions. For each kernel function, we set
three different scales (i.e., Min, Mid, Max) of gridsize and
blocksize in advance on the basis of original computational
logic. The Max dimension setting considers both input size and
the compute capability of the hardware [42]. The dimension
settings of Mid and Min are demultiplicationed. For example,
the Max blocksize setting of MM is (32, 32), and the Mid
and Min are (16, 16) and (8, 8), respectively.

By setting different blocksize, the resource demands and
characteristics of the tasks are diverse. Smaller blocksize
could use fragmented resources more flexibly, while large
blocksize can take advantage of high parallelism when re-
sources are sufficient. Before dispatching a task, we dy-
namically determine the kernel scale dimension based on
the collected global resource usage information to adapt to
changing resource situations.

Type scores. In addition to task type division, we also
need to have a more comprehensive grasp of the overall
characteristics of task execution. Inspired by the application
clustering algorithm [43], we propose a concise but effective
method to handle this problem – type scores. First of all, we
define Idx(x) to represent the index on metric x. Computing



TABLE II
ABBREVIATIONS AND DESCRIPTIONS OF PRIMARY PROFILING METRICS.

Metric Abbr. Descriptions

achieved occupancy AOC Ratio of the average active warps per active cycle to the maximum number
of warps supported on a multiprocessors.

sm efficiency SME The percentage of time at least one warp is active on a multiprocessor
over all multiprocessors on the GPU.

ipc IPC Instructions executed per cycle.

issue slot utilization ISU Percentage of issue slots that issued at least one instruction, averaged
across all cycles.

single precision
fu utilization SPU The utilization level of the multiprocessor function units that execute

single-precision floating-point instructions.
dram utilization DU The utilization level of the device memory relative to the peak utilization.

ldst fu utilization LSU The utilization level of the multiprocessor function units that
execute global, local and shared memory instructions.

tex utilization TU The utilization level of the texture cache relative to the peak utilization.
dram write(read)

throughput DW(R)T Device memory write(read) throughput.

gld(gst) throughput GL(S)T Global memory load(store) throughput.
eligible warps per cycle EWPC Average number of warps that are eligible to issue per active cycle.

shared utilization SU The utilization level of the shared memory relative to peak utilization.

score Scom
t is calculated by Eq. 1. Regarded as the most

important computing metric, IPC’s weight is set to 0.5, and
the average weight of the remaining metrics is 0.5. Heavier
weights reflect greater attention to the characteristics. The
Scom
t can focus on both computing features and memory usage

meanwhile. Similarly, the memory score is calculated by Eq. 2.
For latency tasks, since there is no significant resource usage,
we calculate the average of all metrics in Eq. 32. Type scores
can not only be used to distinguish tasks between different
categories, but also grade the application characteristics within
the same category, such as a sparse memory access task and
an intensive memory access task. By grading the degree of
application, we are able to have more precise control over the
use of resources. A task with high type scores will be launched
when the resources are sufficient and low type scores will be
more appropriate when facing limited remaining resources.

Scom
t = 0.5 ∗mIdx(IPC)

t + 0.5 ∗ 1

N − 1

N∑
i

mi
t

(i ̸= Idx(IPC))

(1)

Smem
t = 0.5 ∗mIdx(DU)

t + 0.5 ∗ 1

N − 1

N∑
i

mi
t

(i ̸= Idx(DU))

(2)

Slat
t =

1

N

N∑
i

mi
t (3)

We can also use the type scores to measure the characteris-
tics of the global GPU resources (i.e., Scom

g and Smem
g ) when

2The definition of type scores we use is straightforward and effective. There
might be other efficacious methods to define the type scores and achieve
similar results, these investigations belong to future work.

Fig. 4. Classification of tasks with different kernels and dimensions based
on the compute and memory scores.

we replace mt with Mg in Eq.1-3. Global scores will be used
in scheduling to select the task and kernel dimension.

To examine the rationality of our type scores, we calculate
both compute and memory scores of different kernels with
varied dimensions (i.e., different blocksize and gridsize)
from the selected applications (see Section VI), and the results
are reported in Fig. 4. It is clear that the type scores intuitively
distinguish different tasks while preserving various categories
of tasks. Our method is not strict to the effect of clustering
algorithms, which only need to roughly classify the task types.

Hybrid scheduling. Based on the collection of GPU re-
source utilization and type scores, we implement GPU mul-
titask hybrid scheduling with CUDA stream. ’Hybrid’ means
our scheduling mechanism emphasizes the type’s complemen-
tarity and launched time of co-execution tasks, paying more
attention to the balance of the global resource utilization. Fig. 5
is the complete scheduling flow chart.



Start

Initialization

Stream available ?

Kernel dimension 
suitable?

Analyse resource utilization and 
select specific type 

Launch task and update resource 
utilization

Finish task and release resource

Finish all tasks ?

End

Block and 
wait

Block and 
wait

N

Y

Y

N

Calculate global scores and tasks’
type scores with Eq.1-3

N

Y

Fig. 5. The flow chart of hybrid scheduling design.

The scheduling process is as follows: 1) During initializa-
tion, we set the GPU resource vector Mg to the maximum
value and create Nstr free streams. 2) Each task will occupy
a stream exclusively and tasks in different streams may be
executed concurrently. If no stream is available, the main
program will be blocked and wait until a task finishes and
releases a stream. 3) Then we track and analyze the remaining
GPU resources and attempt to select a task with a specific type.
For computing resources, we set a threshold α for IPC, when
M

Idx(IPC)
g > α, the GPU currently has enough resources

to start new COM tasks. Similarly, we set β for DU . When
IPC is insufficient, MEM tasks will be preferred. If DU is
also deficient, LAT tasks will be the last attempt. 4) After the
task type is determined, there are various qualified tasks and
kernel dimensions for further selection. For example, GPU
now could launch a COM task. We calculate global scores
Scom
g with Mg according to Eq. 1-3 and compare it with

Scom
t where task t belongs to a COM task. 5) To higher

resource utilization, we select a task t with suitable kernel
dimensions that can consume the most remaining resources,
i.e., Max({Scom

t |Scom
t < Scom

g }). If there is no suitable
task or kernel, which means the GPU is now fully occupied,
the launch of new tasks will be blocked until resources are
released. 6) If there is a kernel that meets the requirements, it
will be executed and GPU resource usage will be updated
simultaneously. 7) This process repeats until all tasks are
completed.

Design implementation. CUDA stream and CPU thread
are used to enable concurrent task execution on GPU. To
utilize RAISE, we need to fine-tune the source code of
workloads. The purpose is to implement that the sched-
uler can assign multiple streams to different tasks and
execute them concurrently. Since all workloads implicitly
use the default stream, we need two transformation steps.
1) Replace the memory management APIs (e.g., malloc(),
free(), cudaMemcpy()) and kernel execution APIs (e.g.,
kernel <<< gridsize, blocksize >>> ()) to the APIs
that support asynchronous execution of the specified stream
(e.g., cudaMalloc(), cudaFree(), cudaMemcpyAsync(),
kernel <<< gridsize, blocksize, streamId >>> (),
cudaStreamSynchronize()); 2) Convert the entry of the
workload (e.g., the main function) into an API that can
be called externally, such as, taskX.run(streamId). The
workload now can be activated dynamically with a specific
stream denoted as streamId.

VI. EVALUATION

A. Experimental Setup

The hardware and software configurations in our experi-
ments are exhibited in Tab. III. We selected 12 representative
tasks from Rodinia [39] and CUDA SDK [41] to verify our
method. The abbreviations, domain, input sizes and task types
are specified in Tab. IV. For each task, we set up kernel
dimensions with three different scales (Min, Mid, Max) in
advance under lightweight code adjustment, and then conduct
profiling. In practical scenario, the kernel settings and profiling
results could be collected automatically based on historic job
data. Kernel dimensions are described in Tab. IV. It should be
noted that most of the tasks have only one kernel. As to the
tasks with more multiple kernels, we only list the dimension of
the dominant kernel of these tasks due to the space limitation.
The kernel scales are classified based on the blocksize.

TABLE III
HARDWARE AND SOFTWARE CONFIGURATIONS.

Settings

Hardware CPU: Intel Xeon Silver 4208 @ 2.10GHz
GPU: NVIDIA Tesla Volta 100

Software

OS: Ubuntu 18.04 x86 64 with kernel 4.15.0-123
GPU driver: 418.87
CUDA version: 10.1
GCC version: 7.5.0

The profiling results based on the Max dimensions are
illustrated in Fig. 6. For the task with more than one kernel,
we perform a weighted summation of the metrics results based
on the execution time of kernels. For a task, we classify its
type based on the IPC and DU metrics on Max dimension
subjectively. We observe that the classification results accord-
ing to Max are equally applicable to Mid and Min dimensions.
Based on the profiling results and classification, we can find
that the characteristics of different types of tasks are distinct
and reasonable. The COM tasks (such as HS and VA) have



TABLE IV
WORKLOADS DESCRIPTION.

Workload Abbr. Domain Type gridsize / blocksize

Min Mid Max

Hotspot [39] HS Physics Simulation COM (128, 128) / (8, 8) (43, 43) / (16, 16) (19, 19) / (32, 32)
Vector Add [41] VA Linear Algebra COM (32, 32) / (8, 8) (128, 128) / (16, 16) (512, 512) / (32, 32)

Matmul [41] MM Linear Algebra COM (320, 160) / (8, 8) (160, 80) / (16, 16) (80, 40) / (32, 32)
SRAD [39] SRAD Image Processing MEM (256, 256) / (4, 4) (128, 128) / (8, 8) (64, 64) / (16, 16)

Computational
Fluid Dynamics [39] CFD Fluid Dynamics MEM (1520, 1) / (64, 1) (760, 1) / (128, 1) (380, 1) / (256, 1)

Gaussian
Elimination [39] GE Linear Algebra MEM (128, 1) / (8, 1) (64, 1) / (16, 1) (32, 1) / (32, 1)

Hotspot3D [39] HS3D Physics Simulation MEM (64, 128) / (8, 4) (32, 128) / (16, 4) (16, 128) / (32, 4)
K-Means [39] KM Data Mining MEM (176, 176) / (16, 1) (88, 88) / (64, 1) (44, 44) / (256, 1)

Breadth-First
Search [39] BFS Graph Algorithms LAT (65535, 1) / (32, 1) (32768, 1) / (64, 1) (16384, 1) / (128, 1)

CUFFT [41] CU Image Processing LAT (8, 1) / (64, 1) (16, 1) / (128, 1) (32, 1) / (156, 1)
Pathfinder [39] PF Grid Traversal LAT (417, 1) / (64, 1) (114, 1) / (128, 1) (47, 1) / (256, 1)

Back Propagation [39] BP Pattern Recognition LAT (1, 2560) / (8, 8) (1, 1280) / (16, 16) (1, 640) / (32, 32)

0

2.5

5

7.5

10

AOC SME IPC ISU SPU DU LSU TU

Sc
al

in
g

pr
of

ili
ng

 
pe

rfo
rm

an
ce

Metrics

HS VA MM SRAD CFD GE HS3D KM BFS CU PF BP

Fig. 6. Workloads profiling results on NVIDIA Tesla Volta 100. The resources described by the metrics include global (AOC, SME), computing (IPC,
ISU , SPU ) and memory access (DU , LSU , TU ). The performance values have been scaled to 0 to 10 for intuitive display and further computation.

higher IPC, ISU and SPU which are the computing related
metrics. The SRAD and HS3D are representative of MEM
tasks equipped with prominent DU metric. Those tasks neither
computing nor memory intensive are LAT tasks like the BFS
and CU.

In our experiments, the maximum value of various resources
is 10. The resource vector dimension N is 8, since the
top eight metrics in Tab. II is sufficient to describe a task
comprehensively. Given the averages of IPC and DU of
all the tasks are about 2.5, we loosen the restriction on
dispatch conditions and set the threshold α and β to 3,
which could meet the resource requirements of most tasks.
The experimental validations demonstrate that our settings are
reasonable and effective. More detailed investigations of these
settings are carried out in sensitivity studies.

Although co-scheduling of GPU kernels has been studied
extensively [22], [23], [25], [26], [31], almost all studies are
designed and evaluated on simulation. With the restriction of
CUDA driver, it is scarcely possible to implement these works
in the real environment and make fair comparisons. Without
loss of generality, we choose three baselines that are close to

the scenarios we use GPU for comparison. The first one is
sequential execution (SQ), which completes all tasks of the
same type and then launches other types sequentially. The
second is round-robin (RR) with the order of COM, MEM
and LAT circularly. The third is random (RD), where tasks
are dispatched randomly. All the baselines support concurrent
execution through streams. The kernel dimensions are also
randomly selected for these baselines.

The evaluation criteria are the execution time to finish all
tasks and the utilization efficiency of different GPU resources.
We repeatedly run each experiment 10 times and then calculate
the average and standard deviation. For the methods containing
random numbers, different random seeds will be examined.

B. Performance and Utilization

To demonstrate the hybrid scheduling capability of RAISE
under different load pressure, we design the total number of
tasks to be processed from 12 to 120 times for simulating
the task queue in the cluster environment. Each workload
described in Tab. IV will be repeatedly executed 1 to 10 times,



1 1 1 1 1 1 1 1 1 11.11 1.14 1.06 

1.96 

1.49 
1.66 

1.50 

1.85 
1.64 1.68 

0

0.5

1

1.5

2

2.5

12 24 36 48 60 72 84 96 108 120

Sp
ee
du
p
ov
er
SQ

Task count

SQ RR RD RAISE

average
1.51x

Fig. 7. Comparison with sequential baseline SQ, round-robin baseline RR and random baseline RD on the execution time of various numbers of tasks. The
speedup is normalized to SQ.

respectively. We use Nstr = 4 CUDA streams for concurrency.
The speedups of the execution time are presented in Fig. 7.

The result reports that RAISE achieves great performance
improvement compared to the non-controlled hybrid schedul-
ing. The average speedup over SQ is 1.51x and up to 1.96x
in the case of 48 tasks. Compared with RR and RD, RAISE
also has boosted improvement. As the task count increases,
RAISE delivers remarkable superiority compared to baselines.
The average speedup over 72 tasks are 1.67x, which manifests
the outstanding scalability. Besides, we find that RAISE has
a much smaller standard deviation (average 0.29) compared
to SQ (3.89), RR (1.07) and RD (4.12), indicating that our
scheduling mechanism is more stable.

We have further analyzed the reasons for the performance
improvement. The entire scheduling process will be profiled
and compared with RD. As shown in Fig. 8, the performances
of global3 and computing metrics are given. Most metrics have
significant improvements except occupancy AOC. The 16%
drop of AOC indicates that the average active warps per active
cycle are reduced and is beneficial to alleviate resource com-
petition. RAISE prevents abundant warps competing for the
same resources simultaneously and disorderly. Eligible warps
EWPC is logically increased as fewer warps be executed at
the same time and more warps are eligible to be issued. The
improvement in SM efficiency SME is slight. This is because
that baselines and RAISE will use SMs whenever possible and
most of the time at least one warp is active on an SM. Because
of the loosen collecting rule of SME, the gap between
baseline and RAISE is not obvious. In terms of computing
resources utilization, the promotions are more remarkable.
Issue slot utilization ISU has a 14% increase, which means
RAISE can achieve more efficient instruction execution. With
the help of hybrid scheduling mechanism and more elaborate
consideration of resources usage, the issue of instructions IPC
and single-precision floating-point computing units SPU are
boosted by 13% and 22%, respectively.

Fig. 9 lists the metrics related to memory access. Compared
with RD, DRAM utilization DU dropped by 25%, which is

3AOC, EWPC and SME belong to the global metrics that represent
the overall resource usage, such as average SMs efficiency and eligible warps
per cycle.

1 1 1 1 1 1

0.84 

1.13 
1.01

1.14 1.15
1.22 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

AOC EWPC SME ISU IPC SPU

U
til
iz
at
io
n
im
pr
ov
em
en
t

ov
er
R
D

Metrics

RD RAISE

Fig. 8. Utilization improvement over RD on global and computing metrics.

1 1 1 1 1 1

0.75 

1.13 

1.53 

1.28 1.26 
1.12 

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

DU GLT GST LSU TU SU

U
til
iz
at
io
n
im
pr
ov
em
en
t

ov
er
R
D

Metrics

RD RAISE

Fig. 9. Utilization improvement over RD on memory metrics.

closely related to the decline of occupancy AOC. Fewer active
warps per cycle result in a degradation of memory usage and
access competition, yielding more memory resources such as
texture memory TU and shared memory SU to be adequately
utilized. Although the DU has decreased, the global memory
throughput GLT and GST still have 13% and 53% improve-
ment respectively. In the aggregate, the lightweight and real-
time statistics collection leveraged by RAISE allows different
resources to be employed proportionally. Less resource compe-
tition and higher utilization bring more efficient task execution.

C. Sensitivity Studies

We explore the impact of α and β as manifest in Fig. 10.
By fixing one of the parameters and setting another one from



1.77 1.78 1.77
1.96 1.95 1.89

1.66 1.65 1.66 1.651.69 1.67
1.79

1.96

1.53 1.52 1.53 1.51 1.51
1.4

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9

Sp
ee

du
p

ov
er

SQ

Value of 𝛼/𝛽

𝛼∈[0,9], 𝛽=3 𝛼=3, 𝛽∈[0,9]

Fig. 10. Different settings of α and β. We change one parameter from 0 to 9 by fixing the other one.

0 to 9, we can compare the performance caused by different
parameter settings. RAISE with smaller α will allow more
compute-bound tasks to be launched. β for the memory-
bound task works in the same way. We can observe that
there is a sweet interval from 2 to 4, where the settings have
a balance between hardware resource constraints and tasks
resource consumption. In general, the influence of α and β on
performance is limited which implies that RAISE is equipped
with great robustness.

0

10

20

30

40

50

60

70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10

Ex
ec
ut
io
n
tim
e
(s
)

Sp
ee
du
p
ov
er
RD

Stream count

Speedup Time

Fig. 11. The execution time and speedup of different stream count.

We further study the influence of stream count Nstr on 36
tasks compared to RD in Fig. 11. As the increase of stream
count, the absolute execution time of RAISE decreases first
and then goes up. The speedup normalized to the random
baseline yields optimal performance with moderate stream
count.

When the stream count is restricted, a handful of tasks
cannot drain the GPU, and account for restricted resource
utilization. The scheduling results are close to serial or pair
execution. On the contrary, as the number of streams increases,
the speedups do not improve accordingly and even deliver a
negative impact, which indicates that excess streams have little
correlation to higher performance. Superfluous streams will
bring heavy scheduling pressure, yielding inevitable resource
competition and terribly time-consuming. A moderate number
such as 4 or 5 streams can maximize GPU’s capabilities
by balancing resource competition and execution efficiency.
As GPU resources expand, the optimal stream number needs
slightly fine-tuning.

1 1 1 1

1.37 1.39 1.34 1.32 

0

0.3

0.6

0.9

1.2

1.5

36 48 60 72Sp
ee
du
p
ov
er
M
in
di
m
en
si
on

Task count

Min Mid Max Dynamic

Fig. 12. The impact of dimension over RAISE.

We also study the impact of kernel dimensions as illustrated
in Fig. 12. As the kernel scales are proportional to the resource
occupancy, keeping Min or Max dimensions will result in
insufficient or excessive resource usage, respectively. While
Mid dimension has a relatively balanced performance. These
analyses demonstrate the importance of kernel dimension
adjustment under various resource conditions. Our RAISE
with dynamic kernel dimensions can achieve up to 1.39x
improvement compared to these prim variants. Dynamic-
dimension decision has the ability to harmonize the kernel
requirement with the remaining resources. By dynamically
selecting the kernel dimension based on current resource con-
ditions, resource competition, as well as execution efficiency
can be coordinated commendably.

VII. CONCLUSION

To address the problem of underutilized resources, we
propose RAISE, a lightweight GPU resource management via
hybrid scheduling. The design is implemented as a resource-
aware scheduler to direct the concurrent running of tasks based
on resource availability. Experimental results show that RAISE
can significantly improve GPU utilization in both computing
and memory metrics. As higher resource utilization is bene-
ficial to the execution time, RAISE can achieve an average
1.51x speedup and up to 1.96x compared to baselines. The
sensitivity studies indicate that RAISE has great robustness.
Moreover, RAISE can be completely implemented on the off-
the-shelf GPUs and is thus more feasible to put into practice.
In future work, we will seek to merge RAISE into an open-



source driver, such as AMD ROCm, aiming to pursue more
precise and fine-grained control. Moreover, we will explore
how to apply the hybrid scheduling design for larger scale
tasks to further raise the concurrency level.

ACKNOWLEDGMENT

This research was supported by the National Natu-
ral Science Foundation of China-#62102465, #U1811461,
#61872392, the Major Program of Guangdong Basic and Ap-
plied Research-#2019B030302002, and the Guangdong Natu-
ral Science Foundation-#2018B030312002.

REFERENCES

[1] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“Gpus and the future of parallel computing,” IEEE micro, vol. 31, no. 5,
pp. 7–17, 2011.

[2] R. R. Expósito, G. L. Taboada, S. Ramos, J. Tourino, and R. Doallo,
“General-purpose computation on gpus for high performance cloud
computing,” Concurrency and Computation: Practice and Experience,
vol. 25, no. 12, pp. 1628–1642, 2013.

[3] Top500, “Top500 supercomputer list,” https://www.top500.org/lists/
top500/2021/11/ Accessed 11/2021.

[4] T. P. Morgan, “Top500 supercomputers: Hungry for the
exascale feast,” https://www.nextplatform.com/2021/11/15/
top500-warm-leftovers-while-we-await-the-exascale-feast/ Accessed
11/2021.

[5] X. Mei, Q. Wang, and X. Chu, “A survey and measurement study of gpu
dvfs on energy conservation,” Digital Communications and Networks,
vol. 3, no. 2, pp. 89–100, 2017.

[6] R. A. Bridges, N. Imam, and T. M. Mintz, “Understanding gpu power:
A survey of profiling, modeling, and simulation methods,” ACM Com-
puting Surveys (CSUR), vol. 49, no. 3, pp. 1–27, 2016.

[7] NVIDIA, “Nvidia ampere architecture,” https://www.nvidia.com/en-us/
data-center/ampere-architecture/ Accessed 11/2021.

[8] AMD, “Amd instinct mi200,” https://www.amd.com/system/files/
documents/amd-instinct-mi200-datasheet.pdf Accessed 11/2021.

[9] Intel, “Intel iris xe gpu,” https://www.intel.com/content/www/us/en/
products/discrete-gpus/iris-xe-aic.html Accessed 11/2021.

[10] J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler,
V. Kindratenko, J. E. Stone, and J. C. Phillips, “Quantifying the impact
of gpus on performance and energy efficiency in hpc clusters,” in
International Conference on Green Computing. IEEE, 2010, pp. 317–
324.

[11] S. Mittal and J. S. Vetter, “A survey of methods for analyzing and
improving gpu energy efficiency,” ACM Computing Surveys (CSUR),
vol. 47, no. 2, pp. 1–23, 2014.

[12] Q. Chen, H. Lee, H. Y. Yeom, and Y. Son, “Flexgpu: A flexible and
efficient scheduler for gpu sharing systems,” in 2020 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing
(CCGRID). IEEE, 2020, pp. 300–309.

[13] NVIDIA, “CUDA streams,” https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#streams Accessed 11/2021.

[14] S. Hodes, “Leveraging asynchronous queues for concurrent execution,”
https://gpuopen.com/learn/concurrent-execution-asynchronous-queues/
Accessed 11/2021.

[15] S. Puthoor, X. Tang, J. Gross, and B. M. Beckmann, “Oversubscribed
command queues in gpus,” in Proceedings of the 11th Workshop on
General Purpose GPUs, 2018, pp. 50–60.

[16] AMD, “Amd polaris gpu architecture white paper,” https://www.amd.
com/system/files/documents/polaris-whitepaper.pdf Accessed 11/2021.

[17] X. Xu, N. Zhang, M. Cui, M. He, and R. Surana, “Characterization and
prediction of performance interference on mediated passthrough gpus
for interference-aware scheduler,” in 11th {USENIX} Workshop on Hot
Topics in Cloud Computing (HotCloud 19), 2019.

[18] X. Geng, H. Zhang, Z. Zhao, and H. Ma, “Interference-aware paral-
lelization for deep learning workload in gpu cluster,” Cluster Computing,
vol. 23, no. 4, pp. 2689–2702, 2020.

[19] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-class
gpu resource management in the operating system,” in 2012 USENIX
Annual Technical Conference (ATC), 2012, pp. 401–412.

[20] Q. Jiao, M. Lu, H. P. Huynh, and T. Mitra, “Improving gpgpu energy-
efficiency through concurrent kernel execution and dvfs,” in 2015
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO). IEEE, 2015, pp. 1–11.

[21] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving gpgpu
concurrency with elastic kernels,” ACM SIGARCH Computer Architec-
ture News, vol. 41, no. 1, pp. 407–418, 2013.

[22] P. Aguilera, K. Morrow, and N. S. Kim, “Fair share: Allocation of
gpu resources for both performance and fairness,” in 2014 IEEE 32nd
International Conference on Computer Design (ICCD). IEEE, 2014,
pp. 440–447.

[23] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Simultaneous multikernel gpu: Multi-tasking throughput processors via
fine-grained sharing,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2016, pp. 358–
369.

[24] X. Zhao, Z. Wang, and L. Eeckhout, “Classification-driven search for
effective sm partitioning in multitasking gpus,” in Proceedings of the
2018 International Conference on Supercomputing, 2018, pp. 65–75.

[25] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-slicer:
efficient intra-sm slicing through dynamic resource partitioning for
gpu multiprogramming,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2016, pp. 230–
242.

[26] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,
“Enabling preemptive multiprogramming on gpus,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, pp. 193–204, 2014.

[27] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative pre-
emption for multitasking on a shared gpu,” ACM SIGARCH Computer
Architecture News, vol. 43, no. 1, pp. 593–606, 2015.

[28] W. Han, D. Mawhirter, B. Wu, L. Ma, and C. Tian, “Flare: Flexibly
sharing commodity gpus to enforce qos and improve utilization,” in The
32nd Workshop on Languages and Compilers for Parallel Computing,
2019.

[29] G. Chen, Y. Zhao, X. Shen, and H. Zhou, “Effisha: A software
framework for enabling effficient preemptive scheduling of gpu,” in
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2017, pp. 3–16.

[30] B. Wu, X. Liu, X. Zhou, and C. Jiang, “Flep: Enabling flexible and
efficient preemption on gpus,” ACM SIGPLAN Notices, vol. 52, no. 4,
pp. 483–496, 2017.

[31] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, “The case
for gpgpu spatial multitasking,” in IEEE International Symposium on
High-Performance Comp Architecture. IEEE, 2012, pp. 1–12.

[32] NVIDIA, “Nvidia cuda toolkit,” https://developer.nvidia.com/zh-cn/
cuda-toolkit Accessed 11/2021.

[33] AMD, “Amd hip guide,” https://rocmdocs.amd.com/en/latest/
Programming Guides/HIP-GUIDE.html Accessed 11/2021.

[34] Khronos, “Opencl,” https://www.khronos.org/opencl/ Accessed 11/2021.
[35] NVIDIA, “stream,” https://docs.nvidia.com/cuda/cuda-runtime-api/

group CUDART STREAM.html Accessed 11/2021.
[36] NVIDIA, “Hyper-q,” https://developer.download.nvidia.cn/compute/

DevZone/C/html x64/6 Advanced/simpleHyperQ/doc/HyperQ.pdf
Accessed 11/2021.

[37] NVIDIA, “Mps,” https://docs.nvidia.com/deploy/mps/index.html Ac-
cessed 11/2021.

[38] NVIDIA, “Mig,” https://docs.nvidia.com/datacenter/tesla/
mig-user-guide/index.html Accessed 11/2021.

[39] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 2009, pp. 44–54.

[40] , “nvprof,” https://docs.nvidia.com/cuda/profiler-users-guide/index.html
Accessed 11/2021.

[41] NVIDIA, “Nvidia cuda sdk,” https://developer.nvidia.com/
cuda-code-samples Accessed 11/2021.

[42] NVIDIA, “Compute capability,” https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html#
features-and-technical-specifications Accessed 11/2021.

[43] J. H. Ryoo, S. J. Quirem, M. Lebeane, R. Panda, S. Song, and L. K.
John, “Gpgpu benchmark suites: How well do they sample the perfor-
mance spectrum?” in 2015 44th International Conference on Parallel
Processing. IEEE, 2015, pp. 320–329.


